cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011262 In the prime factorization of n, increment odd powers and decrement even powers (multiplicative and self-inverse).

Original entry on oeis.org

1, 4, 9, 2, 25, 36, 49, 16, 3, 100, 121, 18, 169, 196, 225, 8, 289, 12, 361, 50, 441, 484, 529, 144, 5, 676, 81, 98, 841, 900, 961, 64, 1089, 1156, 1225, 6, 1369, 1444, 1521, 400, 1681, 1764, 1849, 242, 75, 2116, 2209, 72, 7, 20, 2601, 338, 2809, 324, 3025, 784, 3249
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a011262 n = product $ zipWith (^)
                          (a027748_row n) (map a103889 $ a124010_row n)
    -- Reinhard Zumkeller, Jun 23 2013
  • Mathematica
    f[n_, k_] := n^(If[EvenQ[k], k - 1, k + 1]); Table[Times @@ f @@@ FactorInteger[n], {n, 57}] (* Jayanta Basu, Aug 14 2013 *)
  • PARI
    a(n)=my(f=factor(n));return(prod(i=1,#f[,1],f[i,1]^(f[i,2]-(-1)^f[i,2]))) \\ Paul Tek, Jun 01 2013
    

Formula

Multiplicative with f(p^k) = p^(k-1) if k even, p^(k+1) if k odd.
a(n) = Product_{k = 1..A001221(n)} A027748(n,k) ^ A103889(A124010(n,k)). - Reinhard Zumkeller, Jun 23 2013
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} ((p^5 + p^4 - p + 1)/(p^5 + p^4 + p^3 + p^2)) = 0.21311151701724196530... . - Amiram Eldar, Oct 13 2022