A011264 In the prime factorization of n, increment even powers and decrement odd powers (multiplicative).
1, 1, 1, 8, 1, 1, 1, 4, 27, 1, 1, 8, 1, 1, 1, 32, 1, 27, 1, 8, 1, 1, 1, 4, 125, 1, 9, 8, 1, 1, 1, 16, 1, 1, 1, 216, 1, 1, 1, 4, 1, 1, 1, 8, 27, 1, 1, 32, 343, 125, 1, 8, 1, 9, 1, 4, 1, 1, 1, 8, 1, 1, 27, 128, 1, 1, 1, 8, 1, 1, 1, 108, 1, 1, 125, 8, 1, 1, 1, 32, 243, 1, 1, 8, 1, 1, 1, 4, 1, 27, 1, 8, 1, 1
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio (10000 terms)
Programs
-
Haskell
a011264 n = product $ zipWith (^) (a027748_row n) (map a004442 $ a124010_row n) -- Reinhard Zumkeller, Jun 23 2013
-
Mathematica
f[n_, k_] := n^(If[EvenQ[k], k + 1, k - 1]); Table[Times @@ f @@@ FactorInteger[n], {n, 94}] (* Jayanta Basu, Aug 14 2013 *)
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^if(f[i,2]%2, f[i,2]-1, f[i,2]+1));} \\ Amiram Eldar, Jan 07 2023
Formula
a(n) = Product_{k=1..A001221(n)} (A027748(n,k)^A004442(A124010(n,k))). - Reinhard Zumkeller, Jun 23 2013
From Amiram Eldar, Jan 07 2023: (Start)
a(n) = n^2/A011262(n).
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-3) - 1/p^(2*s-2)). - Amiram Eldar, Sep 21 2023
From Vaclav Kotesovec, May 06 2025: (Start)
Dirichlet g.f.: zeta(2*s-3) * Product_{p prime} (1 + (p-1)*p^(3-2*s) + p^(1-s) - (p-1)*(p^s + p^3)/(p^(2*s) - p^2)).
Sum_{k=1..n} a(k) ~ n^2/4. (End)