cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011264 In the prime factorization of n, increment even powers and decrement odd powers (multiplicative).

Original entry on oeis.org

1, 1, 1, 8, 1, 1, 1, 4, 27, 1, 1, 8, 1, 1, 1, 32, 1, 27, 1, 8, 1, 1, 1, 4, 125, 1, 9, 8, 1, 1, 1, 16, 1, 1, 1, 216, 1, 1, 1, 4, 1, 1, 1, 8, 27, 1, 1, 32, 343, 125, 1, 8, 1, 9, 1, 4, 1, 1, 1, 8, 1, 1, 27, 128, 1, 1, 1, 8, 1, 1, 1, 108, 1, 1, 125, 8, 1, 1, 1, 32, 243, 1, 1, 8, 1, 1, 1, 4, 1, 27, 1, 8, 1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a011264 n = product $ zipWith (^)
                          (a027748_row n) (map a004442 $ a124010_row n)
    -- Reinhard Zumkeller, Jun 23 2013
    
  • Mathematica
    f[n_, k_] := n^(If[EvenQ[k], k + 1, k - 1]); Table[Times @@ f @@@ FactorInteger[n], {n, 94}] (* Jayanta Basu, Aug 14 2013 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^if(f[i,2]%2, f[i,2]-1, f[i,2]+1));} \\ Amiram Eldar, Jan 07 2023

Formula

a(n) = Product_{k=1..A001221(n)} (A027748(n,k)^A004442(A124010(n,k))). - Reinhard Zumkeller, Jun 23 2013
From Amiram Eldar, Jan 07 2023: (Start)
a(n) = n^2/A011262(n).
a(n) = n*A007947(n)/A007913(n)^2.
a(n) = n*A336643(n)/A007913(n).
a(n) = A356191(n)/A007913(n). (End)
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-3) - 1/p^(2*s-2)). - Amiram Eldar, Sep 21 2023
From Vaclav Kotesovec, May 06 2025: (Start)
Dirichlet g.f.: zeta(2*s-3) * Product_{p prime} (1 + (p-1)*p^(3-2*s) + p^(1-s) - (p-1)*(p^s + p^3)/(p^(2*s) - p^2)).
Sum_{k=1..n} a(k) ~ n^2/4. (End)