A011274 Triangle of numbers of hybrid rooted trees (divided by Fibonacci numbers).
1, 2, 1, 7, 4, 1, 31, 18, 6, 1, 154, 90, 33, 8, 1, 820, 481, 185, 52, 10, 1, 4575, 2690, 1065, 324, 75, 12, 1, 26398, 15547, 6276, 2006, 515, 102, 14, 1, 156233, 92124, 37711, 12468, 3420, 766, 133, 16, 1, 943174, 556664, 230277, 78030, 22412, 5439, 1085, 168, 18, 1
Offset: 1
Examples
1 2 1 7 4 1 31 18 6 1 154 90 33 8 1 820 481 185 52 10 1 4575 2690 1065 324 75 12 1 Production matrix is: 2 1 3 2 1 5 3 2 1 8 5 3 2 1 13 8 5 3 2 1 21 13 8 5 3 2 1 34 21 13 8 5 3 2 1 55 34 21 13 8 5 3 2 1 89 55 34 21 13 8 5 3 2 1 ... - _Philippe Deléham_, Feb 03 2014
Links
- Vincenzo Librandi, Rows n = 1..100, flattened
- Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
- J. M. Pallo, On the listing and random generation of hybrid binary trees, International Journal of Computer Mathematics, 50 (1994) 135-145.
- Index entries for sequences related to rooted trees
Programs
-
Maple
A011274 := proc(n,k) k/n*add( binomial(i+n-1,n-1)*binomial(i+n,n-k-i),i=0..n-k) ; end proc: # R. J. Mathar, Mar 21 2011
-
Mathematica
t[n_, k_] := k/n*Binomial[n, k]*HypergeometricPFQ[ {k-n, n, n+1}, {1/2 + k/2, 1+k/2}, -1/4]; Flatten[ Table[ t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Dec 02 2011, after Vladimir Kruchinin *)
-
Maxima
A011274(n,k):= k/n*sum(binomial(i+n-1,n-1)*binomial(i+n,n-k-i), i,0,n-k); /* Vladimir Kruchinin, Mar 17 2011 */
Formula
T(n,k) = (k/n) *Sum_{i=0..n-k} binomial(i+n-1,n-1)*binomial(i+n,n-k-i). - Vladimir Kruchinin, Mar 17 2011
(r/(m*n+r))*T((m+1)*n+r,m*n+r) = Sum_{k=1..n} k*T((m+1)*n-k,m*n)*T(r+k,r)/n. - Vladimir Kruchinin, Mar 17 2011
T(n,m) = (m/n)*Sum_{k=1..n-m+1} k*A007863(k-1)*T(n-k,m-1), 1 < m <= n. - Vladimir Kruchinin, Mar 17 2011
Comments