A011553 Number of standard Young tableaux of type (n,n,n) whose (2,1) entry is odd.
0, 2, 16, 182, 2400, 35310, 562848, 9540674, 169777504, 3142665968, 60099912320, 1181283863632, 23767586624960, 487947659276790, 10195163202404160, 216335108170636650, 4653803620322450880, 101343766487960918460, 2231268469684932939360, 49614581272087698764820
Offset: 1
Keywords
Examples
a(2) = 2 because the standard Young tableaux of type (2,2,2) whose (2,1) entry is odd are: +---+ +---+ |1 2| |1 2| |3 5| |3 4| |4 6| |5 6| +---+ +---+ - _Alois P. Heinz_, Feb 28 2012
References
- For definition see James and Kerber, Representation Theory of Symmetric Group, Addison-Wesley, 1981, p. 107.
Links
Crossrefs
Cf. A123555.
Formula
a(n) ~ 3^(3*n+7/2) / (64*Pi*n^4). - Vaclav Kotesovec, Sep 06 2014
Conjecture D-finite with recurrence 6*(n+2)*(n+1)^2*a(n) -(n+1)*(164*n^2-179*n+51) *a(n-1) +(46*n^3-609*n^2+812*n+12) *a(n-2) +12*(3*n-4) *(2*n-5) *(3*n-5)*a(n-3)=0. - R. J. Mathar, Nov 22 2023
Extensions
Definition corrected by Amitai Regev (amitai.regev(AT)weizmann.ac.il), Nov 15 2006
More terms and offset corrected by Alois P. Heinz, Feb 28 2012