cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011553 Number of standard Young tableaux of type (n,n,n) whose (2,1) entry is odd.

Original entry on oeis.org

0, 2, 16, 182, 2400, 35310, 562848, 9540674, 169777504, 3142665968, 60099912320, 1181283863632, 23767586624960, 487947659276790, 10195163202404160, 216335108170636650, 4653803620322450880, 101343766487960918460, 2231268469684932939360, 49614581272087698764820
Offset: 1

Views

Author

giambruno(AT)ipamat.math.unipa.it

Keywords

Examples

			a(2) = 2 because the standard Young tableaux of type (2,2,2) whose (2,1) entry is odd are:
+---+   +---+
|1 2|   |1 2|
|3 5|   |3 4|
|4 6|   |5 6|
+---+   +---+  - _Alois P. Heinz_, Feb 28 2012
		

References

  • For definition see James and Kerber, Representation Theory of Symmetric Group, Addison-Wesley, 1981, p. 107.

Crossrefs

Cf. A123555.

Formula

a(n) ~ 3^(3*n+7/2) / (64*Pi*n^4). - Vaclav Kotesovec, Sep 06 2014
Conjecture D-finite with recurrence 6*(n+2)*(n+1)^2*a(n) -(n+1)*(164*n^2-179*n+51) *a(n-1) +(46*n^3-609*n^2+812*n+12) *a(n-2) +12*(3*n-4) *(2*n-5) *(3*n-5)*a(n-3)=0. - R. J. Mathar, Nov 22 2023

Extensions

Definition corrected by Amitai Regev (amitai.regev(AT)weizmann.ac.il), Nov 15 2006
More terms and offset corrected by Alois P. Heinz, Feb 28 2012