cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011769 a(0) = 1, a(n+1) = 3 * a(n) - F(n)*(F(n) + 1), where F(n) = A000045(n) is n-th Fibonacci number.

Original entry on oeis.org

1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8955, 25675, 73945, 213825, 620595, 1807263, 5279283, 15465139, 45420261, 133708777, 394446691, 1165855131, 3451793403, 10235554347, 30392965809, 90357645121, 268922897571, 801139867063, 2388683219347, 7127469430899
Offset: 0

Views

Author

Keywords

References

  • L. Euler, (E326) Observationes analyticae, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 59.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 575.
  • P. Henrici, Applied and Computational Complex Analysis. Wiley, NY, 3 vols., 1974-1986. (Vol. 1, p. 42.)
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 74.
  • See also the references mentioned under A002426.

Crossrefs

Cf. A002426.
Cf. A059727.

Programs

  • Haskell
    a011769 n = a011769_list !! n
    a011769_list = 1 : zipWith (-) (map (* 3) a011769_list) a059727_list
    -- Reinhard Zumkeller, Dec 17 2011
  • Maple
    A011769 := proc(n) if n = 0 then 1; else 3*procname(n-1)-combinat[fibonacci](n-1)*(1+combinat[fibonacci](n-1)) ; end if; end proc:
    seq(A011769(n),n=0..40) ;
  • Mathematica
    nxt[{n_,a_}]:=Module[{fib=Fibonacci[n]},{n+1,3a-fib(fib+1)}]; Transpose[ [ nxt,{0,1},30]][[2]] (* or *) LinearRecurrence[{6,-8,-8,14,4,-3},{1,3,7,19,51,141},30] (* Harvey P. Dale, Jun 05 2015 *)

Formula

a(n) = +6*a(n-1) -8*a(n-2) -8*a(n-3) +14*a(n-4) +4*a(n-5) -3*a(n-6). [R. J. Mathar, Sep 04 2010]
G.f.: (1-3*x-3*x^2+9*x^3+3*x^4-3*x^5) / ( (3*x-1)*(1+x)*(x^2+x-1)*(x^2-3*x+1) ). - Sergei N. Gladkovskii, Dec 16 2011
a(n+1) = (1/10) * (3^n + 2*Lucas(2n) + Lucas(n) + (-1)^n ). - Ralf Stephan, Aug 10 2013
a(k) = 3^(k+1)*x^k/10 + (-1)^(k+1)*x^k/10 + p^(k+1)*x^k/5 + (-q)^(k+1)*x^k/5 + p^(2*k+2)*x^k/5 + q^(2*k+2)*x^k/5 ; p=(sqrt(5)+1)/2 , q=(sqrt(5)-1)/2 . - Sergei N. Gladkovskii, Dec 17 2011

Extensions

Values at n>=18 corrected by R. J. Mathar, Sep 04 2010