A011769 a(0) = 1, a(n+1) = 3 * a(n) - F(n)*(F(n) + 1), where F(n) = A000045(n) is n-th Fibonacci number.
1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8955, 25675, 73945, 213825, 620595, 1807263, 5279283, 15465139, 45420261, 133708777, 394446691, 1165855131, 3451793403, 10235554347, 30392965809, 90357645121, 268922897571, 801139867063, 2388683219347, 7127469430899
Offset: 0
References
- L. Euler, (E326) Observationes analyticae, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 59.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 575.
- P. Henrici, Applied and Computational Complex Analysis. Wiley, NY, 3 vols., 1974-1986. (Vol. 1, p. 42.)
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 74.
- See also the references mentioned under A002426.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990) 3-20, esp. 18-19.
- V. E. Hoggatt, Jr. and M. Bicknell, Diagonal sums of generalized Pascal triangles, Fib. Quart., 7 (1969), 341-358, 393.
- L. W. Shapiro et al., The Riordan group, Discrete Applied Math., 34 (1991), 229-239.
- Index entries for linear recurrences with constant coefficients, signature (6,-8,-8,14,4,-3).
Programs
-
Haskell
a011769 n = a011769_list !! n a011769_list = 1 : zipWith (-) (map (* 3) a011769_list) a059727_list -- Reinhard Zumkeller, Dec 17 2011
-
Maple
A011769 := proc(n) if n = 0 then 1; else 3*procname(n-1)-combinat[fibonacci](n-1)*(1+combinat[fibonacci](n-1)) ; end if; end proc: seq(A011769(n),n=0..40) ;
-
Mathematica
nxt[{n_,a_}]:=Module[{fib=Fibonacci[n]},{n+1,3a-fib(fib+1)}]; Transpose[ [ nxt,{0,1},30]][[2]] (* or *) LinearRecurrence[{6,-8,-8,14,4,-3},{1,3,7,19,51,141},30] (* Harvey P. Dale, Jun 05 2015 *)
Formula
a(n) = +6*a(n-1) -8*a(n-2) -8*a(n-3) +14*a(n-4) +4*a(n-5) -3*a(n-6). [R. J. Mathar, Sep 04 2010]
G.f.: (1-3*x-3*x^2+9*x^3+3*x^4-3*x^5) / ( (3*x-1)*(1+x)*(x^2+x-1)*(x^2-3*x+1) ). - Sergei N. Gladkovskii, Dec 16 2011
a(n+1) = (1/10) * (3^n + 2*Lucas(2n) + Lucas(n) + (-1)^n ). - Ralf Stephan, Aug 10 2013
a(k) = 3^(k+1)*x^k/10 + (-1)^(k+1)*x^k/10 + p^(k+1)*x^k/5 + (-q)^(k+1)*x^k/5 + p^(2*k+2)*x^k/5 + q^(2*k+2)*x^k/5 ; p=(sqrt(5)+1)/2 , q=(sqrt(5)-1)/2 . - Sergei N. Gladkovskii, Dec 17 2011
Extensions
Values at n>=18 corrected by R. J. Mathar, Sep 04 2010