cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011775 Numbers k such that k divides phi(k) * sigma(k).

Original entry on oeis.org

1, 6, 18, 24, 28, 40, 54, 72, 84, 96, 117, 120, 135, 162, 196, 200, 216, 224, 234, 252, 270, 288, 360, 384, 468, 486, 496, 540, 588, 600, 640, 648, 672, 756, 775, 819, 864, 891, 936, 1000, 1080, 1152, 1350, 1372, 1458, 1488, 1521, 1536, 1550, 1568, 1638, 1701, 1764
Offset: 1

Views

Author

Keywords

Comments

Comments from Farideh Firoozbakht, Dec 01 2005: (Start)
I. All numbers of the form 2^(4m-1)*5^n where m & n are natural numbers are in the sequence. Because if s=2^(4m-1)*5^n then phi(s)=2^(4m-2)*4*5^(n-1); sigma(s)=(2^(4m)-1)*(5^(n+1)-1)/4 so phi(s)*sigma(s)=6*((16^m-1)/15)*((5^(n+1)-1)/4)*(2^(4m-1)*5^n)= 6*((16^m-1)/15)*((5^(n+1)-1)/4)*s, note that (16^m-1)/15 and (5^(n+1)-1)/4 are integers, hence s divides phi(s)*sigma(s).
II. All numbers of the form 2^(2m-1)*3^n where m & n are natural numbers (A228104) are in the sequence. Because if s=2^(2m-1)*3^n then phi(s)=2^(2m-2)*2*3^(n-1); sigma(s)=(2^(2m)-1)*(3^(n+1)-1)/2 so phi(s)*sigma(s)=((3^(n+1)-1)/2)*((4^m-1)/3)*(2^(2m-1)*3^n) =((3^(n+1)-1)/2)*((4^m-1)/3)*s, note that (3^(n+1)-1)/2 and (4^m-1)/3 are integers, hence s divides phi(s)*sigma(s).
So this sequence is infinite. Also it is obvious that perfect numbers (A000396) and multiply-perfect numbers(A007691) are subsequences of this sequence. (End)

Crossrefs

Programs

Extensions

Corrected and extended by David W. Wilson