cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011779 Expansion of 1/((1-x)^3*(1-x^3)^2).

Original entry on oeis.org

1, 3, 6, 12, 21, 33, 51, 75, 105, 145, 195, 255, 330, 420, 525, 651, 798, 966, 1162, 1386, 1638, 1926, 2250, 2610, 3015, 3465, 3960, 4510, 5115, 5775, 6501, 7293, 8151, 9087, 10101, 11193, 12376, 13650
Offset: 0

Views

Author

Keywords

Comments

The Ca2 and Ze4 triangle sums of A139600 are related to the sequence given above, e.g., Ze4(n) = A011779(n-1) - A011779(n-2) - A011779(n-4) + 3*A011779(n-5), with A011779(n) = 0 for n <= -1. For the definitions of these triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011

Crossrefs

Cf. A011779, A049347, A099254, A139600, A236770 (first trisection, except 0).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60);
    Coefficients(R!( 1/((1-x)^3*(1-x^3)^2) )); // G. C. Greubel, Oct 22 2024
    
  • Mathematica
    CoefficientList[Series[1 / ((1 - x)^3 (1 - x^3)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 23 2013 *)
  • PARI
    Vec(1/((1-x)^3*(1-x^3)^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
    
  • PARI
    a(n)=1/216 * n^4 + 1/12 * n^3 + 37/72 * n^2 + [5/4, 139/108, 131/108][1+n%3] * n + [1, 10/9, 7/9][1+n%3] \\ Yurii Ivanov, Jul 06 2021
    
  • SageMath
    def A011779_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^3*(1-x^3)^2) ).list()
    A011779_list(60) # G. C. Greubel, Oct 22 2024

Formula

a(n) = (1/216)*((208 + 270*n + 111*n^2 + 18*n^3 + n^4) - 8*(-1)^n*(A099254(n) + A099254(n-1)) + 16*(A049347(n) + 2*A049347(n-1)) ). - G. C. Greubel, Oct 22 2024