cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011796 Number of irreducible alternating Euler sums of depth 6 and weight 6+2n.

Original entry on oeis.org

1, 3, 9, 20, 42, 75, 132, 212, 333, 497, 728, 1026, 1428, 1932, 2583, 3384, 4389, 5598, 7084, 8844, 10962, 13442, 16380, 19776, 23751, 28301, 33561, 39536, 46376, 54081, 62832, 72624, 83655, 95931, 109668, 124866, 141778, 160398
Offset: 1

Views

Author

Keywords

Comments

a(n-6) is the number of aperiodic necklaces (Lyndon words) with 6 black beads and n-6 white beads.

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 147.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[42, 20, 9, 3, 1, 0$7, -1, -4, -9]]). Matrix(15, (i,j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -3, -1, 1, 4, -3, -3, 4, 1, -1, -3, 1, 2, -1][i] else 0 fi)^(n-5))[1,1]: seq(a(n), n=1..50); # Alois P. Heinz, Aug 04 2008
  • Mathematica
    a[n_] := Sum[Binomial[(n+6)/d, 6/d]*MoebiusMu[d],{d, Divisors[GCD[6, n+6]]}]/(n+6); Array[a, 40] (* Jean-François Alcover, Feb 02 2015 *)

Formula

G.f.: x*(1+x+2*x^2+2*x^3+3*x^4+2*x^6+x^7)/((1-x)^2*(1-x^2)^2*(1-x^3)*(1-x^6)).
G.f.: (1/(1-x)^6-1/(1-x^2)^3-1/(1-x^3)^2+1/(1-x^6))/6. - Herbert Kociemba, Oct 23 2016
a(n) = T(n,6), array T as in A051168.