cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A011819 M-sequences m_0,m_1,m_2,m_3 with m_1 < n.

Original entry on oeis.org

2, 5, 16, 52, 152, 392, 904, 1899, 3694, 6743, 11672, 19318, 30772, 47426, 71024, 103717, 148122, 207385, 285248, 386120, 515152, 678316, 882488, 1135535, 1446406, 1825227, 2283400, 2833706, 3490412, 4269382, 5188192, 6266249
Offset: 1

Views

Author

Svante Linusson (linusson(AT)math.kth.se)

Keywords

References

  • S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.

Crossrefs

Programs

  • Magma
    [n*(2*n^5+15*n^4+50*n^3+165*n^2+308*n+540)/360+2: n in [0..40]]; // Vincenzo Librandi, Feb 16 2014
  • Mathematica
    CoefficientList[Series[(x^6 - 7 x^5 + 19 x^4 -25 x^3 + 23 x^2 - 9 x + 2)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 16 2014 *)
  • PARI
    a(n)=n*(2*n^5+15*n^4+50*n^3+165*n^2+308*n+540)/360+2 \\ Charles R Greathouse IV, Dec 08 2011
    
  • PARI
    Vec(-x*(x^6-7*x^5+19*x^4-25*x^3+23*x^2-9*x+2)/(x-1)^7 + O(x^100)) \\ Colin Barker, Feb 15 2014
    

Formula

a(n)= ( 2*n^6 +15*n^5 +50*n^4 +165*n^3 +308*n^2 +540*n +720 )/360. [Frank Ellermann]
G.f.: -x*(x^6-7*x^5+19*x^4-25*x^3+23*x^2-9*x+2) / (x-1)^7. - Colin Barker, Feb 15 2014

A011820 Number of M-sequences m_0,...,m_4 with m_1 < n.

Original entry on oeis.org

2, 6, 32, 203, 1144, 5345, 20926, 70506, 209746, 562727, 1384758, 3167606, 6807620, 13863904, 26941700, 50245591, 90358146, 157312324, 266040452, 438299013, 705186944, 1110395771, 1714352818, 2599444040, 3876530866
Offset: 0

Views

Author

Svante Linusson (linusson(AT)math.kth.se)

Keywords

References

  • S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.

Crossrefs

Programs

  • PARI
    a(n)=n*(4*n^9+61*n^8+408*n^7+1722*n^6+6132*n^5+18333*n^4+41072*n^3 +88748*n^2 +133824*n+193536)/120960+2 \\ Charles R Greathouse IV, Dec 08 2011

Formula

a(n) = ( 4*n^10 +61*n^9 +408*n^8 +1722*n^7 +6132*n^6 +18333*n^5 +41072*n^4 +88748*n^3 +133824*n^2 +193536*n +241920 )/120960. - Frank Ellermann
G.f.: -x*(x^10 -11*x^9 +53*x^8 -147*x^7 +268*x^6 -298*x^5 +341*x^4 -149*x^3 +76*x^2 -16*x +2) / (x-1)^11. - Colin Barker, Feb 15 2014

A011821 Number of M-sequences m_0,...,m_5 with m_1 < n.

Original entry on oeis.org

2, 7, 64, 877, 10742, 102050, 753994, 4486435, 22285884, 95264798, 359074648, 1216716022, 3763991016, 10763615106, 28741372964, 72261453121, 172248589406, 391536067037, 852876877928, 1787799809335, 3619382778994
Offset: 1

Views

Author

Svante Linusson (linusson(AT)math.kth.se)

Keywords

Comments

Apparently a polynomial of degree 15: n^15/32659200 etc., compare A011829. [Frank Ellermann]

References

  • S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- (x^15 - 16 x^14 + 118 x^13 - 532 x^12 + 1648 x^11 - 3712 x^10 + 5776 x^9 - 12080 x^8 - 2775 x^7 - 21034 x^6 - 3582 x^5 - 4110 x^4 + 427 x^3 - 192 x^2 + 25 x - 2)/(x - 1)^16, {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)
    LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{2,7,64,877,10742,102050,753994,4486435,22285884,95264798,359074648,1216716022,3763991016,10763615106,28741372964,72261453121},30] (* Harvey P. Dale, Nov 24 2019 *)

Formula

G.f.: -x*(x^15 -16*x^14 +118*x^13 -532*x^12 +1648*x^11 -3712*x^10 +5776*x^9 -12080*x^8 -2775*x^7 -21034*x^6 -3582*x^5 -4110*x^4 +427*x^3 -192*x^2 +25*x -2)/(x -1)^16. [Colin Barker, Sep 18 2012]
Showing 1-3 of 3 results.