cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011849 a(n) = floor(binomial(n,3)/3).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 11, 18, 28, 40, 55, 73, 95, 121, 151, 186, 226, 272, 323, 380, 443, 513, 590, 674, 766, 866, 975, 1092, 1218, 1353, 1498, 1653, 1818, 1994, 2181, 2380, 2590, 2812, 3046, 3293, 3553, 3826
Offset: 0

Views

Author

Keywords

Crossrefs

A column of triangle A011857.

Programs

  • Magma
    [Floor(Binomial(n,3)/3): n in [0..50]]; // Vincenzo Librandi, Jun 19 2012
  • Maple
    seq(floor(binomial(n,3)/3), n=0..42); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    CoefficientList[Series[x^4*(x^2-x+1)*(x^3-x^2+1)/((-1+x)^4*(x^6+x^3+1)),{x,0,50}],x] (* Vincenzo Librandi, Jun 19 2012 *)

Formula

G.f.: x^4*(1-x+x^2)*(1-x^2+x^3)/((1-x)^3*(1-x^9)). - Ralf Stephan, Mar 05 2004
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 3*a(n-3) + 3*a(n-4) - 6*a(n-5) + 3*a(n-6) + 3*a(n-7) - 6*a(n-8) + 4*a(n-9) - a(n-10).
G.f.: x^4*(x^2-x+1)*(x^3-x^2+1) / ( (-1+x)^4*(x^6+x^3+1) ). (End)
a(n) = (1/54) * ( n^3 - 3*n - 6 + [6,8,4,-12,8,4,-30,8,4](mod 9) ). - Ralf Stephan, Aug 11 2013