cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011850 a(n) = floor(binomial(n,4)/4).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 8, 17, 31, 52, 82, 123, 178, 250, 341, 455, 595, 765, 969, 1211, 1496, 1828, 2213, 2656, 3162, 3737, 4387, 5118, 5937, 6851, 7866, 8990, 10230, 11594, 13090, 14726, 16511, 18453, 20562
Offset: 0

Views

Author

Keywords

Crossrefs

A column of triangle A011857.

Programs

  • Maple
    seq(floor(binomial(n,4)/4), n=0.. 39); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    Floor[Binomial[Range[0,50],4]/4] (* or *) LinearRecurrence[ {5,-10,10,-6,6,-10,10,-6,6,-10,10,-6,6,-10,10,-5,1},{0,0,0,0,0,1,3,8,17,31,52,82,123,178,250,341,455},50] (* Harvey P. Dale, Mar 25 2013 *)

Formula

a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -6*a(n-4) +6*a(n-5) -10*a(n-6) +10*a(n-7) -6*a(n-8) +6*a(n-9) -10*a(n-10) +10*a(n-11) -6*a(n-12) +6*a(n-13) -10*a(n-14) +10*a(n-15) -5*a(n-16) +a(n-17). [R. J. Mathar, Apr 15 2010]
G.f.: x^5*(-3*x^7-3*x^3+3*x^8-2*x^9+x^10-x^5+2*x^6-2*x+3*x^2+2*x^4+1) / ( (1-x)^5*(x^4+1)*(x^8+1) ). [R. J. Mathar, Apr 15 2010]