cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A011857 Triangle of numbers [ C(n,k)/k ], k=1..n-1.

Original entry on oeis.org

2, 3, 1, 4, 3, 1, 5, 5, 3, 1, 6, 7, 6, 3, 1, 7, 10, 11, 8, 4, 1, 8, 14, 18, 17, 11, 4, 1, 9, 18, 28, 31, 25, 14, 5, 1, 10, 22, 40, 52, 50, 35, 17, 5, 1, 11, 27, 55, 82, 92, 77, 47, 20, 6, 1, 12, 33, 73, 123, 158, 154, 113, 61, 24, 6, 1, 13, 39, 95, 178, 257, 286, 245, 160
Offset: 2

Views

Author

Keywords

Crossrefs

Columns include A011848, A011849, A011850, A011851, A011852, A011853, A011854, A011855, A011856. Row sums are in A101687. Cf. A011847.

Programs

  • Mathematica
    Flatten[Table[Floor[Binomial[n,k]/k],{n,20},{k,n-1}]] (* Harvey P. Dale, Apr 19 2015 *)

A215052 a(n) = (binomial(n,5) - floor(n/5)) / 5.

Original entry on oeis.org

1, 4, 11, 25, 50, 92, 158, 257, 400, 600, 873, 1237, 1713, 2325, 3100, 4069, 5266, 6729, 8500, 10625, 13155, 16145, 19655, 23750, 28500, 33981, 40274, 47466, 55650, 64925, 75397, 87178, 100387, 115150, 131600, 149878, 170132, 192518, 217200
Offset: 6

Views

Author

Peter Bala, Aug 01 2012

Keywords

Comments

Apparently a duplicate of A036837. - R. J. Mathar, Aug 06 2012
Not the same as A011851.
Let p be a prime. Saikia and Vogrinc have proved that (1/p)*{binomial(n,p) - floor(n/p)} is an integer sequence. The present sequence is the case p = 5. Other cases are A002620 (p = 2), A014125 (p = 3), A215053 (p = 7) and A215054 (p = 11).
There is a connection between these sequences and A178904. For a fixed prime p the o.g.f. for the sequence (1/p)*{binomial(n,p) - floor(n/p)} is a rational function of the form x^(p+1)*R(p,x)/((1-x^p)*(1-x)^p). The polynomial R(p,x) = sum {k = 0..p-1} (1/p)*{1 - (-1)^k*binomial(p-1,k)}*x^(k-1). For prime p >= 3, -R(p,x) is equal to the p-th row polynomial of A178904.

Crossrefs

Cf. A002620 (p = 2), A014125 (p = 3), A178904, A215053 (p = 7), A215054( p = 11).

Formula

a(n) = (1/5)*{binomial(n,5) - floor(n/5)}.
O.g.f.: sum {n>=0} a(n)*x^n = x^6*(1-x+x^2)/((1-x^5)*(1-x)^5) = x^6*(1 + 4*x + 11*x^2 + 25*x^3 + ...).
Showing 1-2 of 2 results.