A011861 a(n) = floor(n(n-1)/8).
0, 0, 0, 0, 1, 2, 3, 5, 7, 9, 11, 13, 16, 19, 22, 26, 30, 34, 38, 42, 47, 52, 57, 63, 69, 75, 81, 87, 94, 101, 108, 116, 124, 132, 140, 148, 157, 166, 175, 185, 195, 205, 215, 225, 236, 247, 258, 270, 282, 294, 306, 318, 331, 344, 357, 371, 385, 399, 413, 427, 442, 457, 472
Offset: 0
Keywords
Links
- Matthew House, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3, -4, 4, -4, 4, -4, 4, -3, 1).
Programs
-
Magma
[n*(n-1) div 8: n in [0..70]]; // Vincenzo Librandi, Aug 08 2015
-
Maple
seq(floor(binomial(n,2)/4), n=0..51); # Zerinvary Lajos, Jan 12 2009
-
Mathematica
LinearRecurrence[{3, -4, 4, -4, 4, -4, 4, -3, 1}, {0, 0, 0, 0, 1, 2, 3, 5, 7}, 70] (* Vincenzo Librandi, Aug 08 2015 *)
Formula
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = +3*a(n-1) -4*a(n-2) +4*a(n-3) -4*a(n-4) +4*a(n-5) -4*a(n-6) +4*a(n-7) -3*a(n-8) +a(n-9).
G.f.: x^4*(x^2+1-x)/ ((1-x)^3 * (x^2+1) * (x^4+1)). (End)