A011892 a(n) = floor( n*(n-1)*(n-2)/10 ).
0, 0, 0, 0, 2, 6, 12, 21, 33, 50, 72, 99, 132, 171, 218, 273, 336, 408, 489, 581, 684, 798, 924, 1062, 1214, 1380, 1560, 1755, 1965, 2192, 2436, 2697, 2976, 3273, 3590, 3927, 4284, 4662, 5061, 5483, 5928, 6396, 6888, 7404, 7946, 8514, 9108, 9729, 10377, 11054, 11760
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1).
Crossrefs
Cf. A011886.
Programs
-
Magma
[Floor(n*(n-1)*(n-2)/10 ): n in [0..50]]; // Vincenzo Librandi, Jul 07 2012
-
Mathematica
CoefficientList[Series[x^4*(2+x^3)/((1-x)^3*(1-x^5)),{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *) Floor[3*Binomial[Range[0,50], 3]/5] (* G. C. Greubel, Oct 06 2024 *)
-
SageMath
Floor[3*Binomial[Range[0, 50], 3]/5] # G. C. Greubel, Oct 06 2024
Formula
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = +3*a(n-1) -3*a(n-2) +a(n-3) +a(n-5) -3*a(n-6) +3*a(n-7) -a(n-8).
G.f.: x^4*(2+x^3)/( (1-x)^4*(1+x+x^2+x^3+x^4) ). (End)