A011906 If b(n) is A011900(n) and c(n) is A001109(n), then a(n) = b(n)*c(n) = b(n) + (b(n)+1) + (b(n)+2) + ... + c(n).
1, 18, 525, 17340, 586177, 19896030, 675781821, 22956120408, 779829016225, 26491211221770, 899921240562957, 30570830315362260, 1038508305678375841, 35278711540581704598, 1198437683944896688125, 40711602541832856049200, 1382996048733983114022337
Offset: 1
Examples
a(3) = 525 = 15*35 = 15 + 16 + ... + 35.
References
- Mario Velucchi "From the desk of ... Mario Velucchi" in 'Mathematics and Informatics quarterly' volume 7 - 2/1997, p. 81.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..650
- Index entries for linear recurrences with constant coefficients, signature (41,-246,246,-41,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1-23*x+33*x^2-3*x^3)/((1-x)*(1-34*x+x^2)*(1-6*x+x^2)) )); // G. C. Greubel, Oct 18 2024 -
Maple
A011900 := proc(n) coeftayl( (1-4*x+x^2)/((1-x)*(1-6*x+x^2)),x=0,n) ; end proc: A001109 := proc(n) coeftayl( x/(1-6*x+x^2),x=0,n) ; end proc: A011906 := proc(n) A001109(n)*A011900(n-1) ; end proc: seq(A011906(n),n=1..30) ; # R. J. Mathar, Apr 15 2010
-
Mathematica
LinearRecurrence[{41, -246, 246, -41, 1}, {1, 18, 525, 17340, 586177}, 20] (* Paul Cleary, Dec 05 2015 *) CoefficientList[Series[(-1 + 23*x - 33*x^2 + 3*x^3)/((x - 1)*(x^2 - 34*x + 1)*(1 - 6*x + x^2)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 16 2017 *)
-
SageMath
def A011906_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1-23*x+33*x^2-3*x^3)/((1-x)*(1-34*x+x^2)*(1-6*x+x^2)) ).list() a=A011906_list(30); a[1:] # G. C. Greubel, Oct 18 2024
Formula
From R. J. Mathar, Apr 15 2010: (Start)
G.f.: x*(1-23*x+33*x^2-3*x^3)/((1-x)*(1-34*x+x^2)*(1-6*x+x^2)).
a(n) = 41*a(n-1) -246*a(n-2) +246*a(n-3) -41*a(n-4) +a(n-5). (End)
Lim_{n -> infinity} a(n)/a(n-1) = A156164. - César Aguilera, Jul 17 2020
Extensions
More terms from R. J. Mathar, Apr 15 2010