cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011919 a(n) = floor(n*(n-1)*(n-2)*(n-3)/9).

Original entry on oeis.org

0, 0, 0, 0, 2, 13, 40, 93, 186, 336, 560, 880, 1320, 1906, 2669, 3640, 4853, 6346, 8160, 10336, 12920, 15960, 19506, 23613, 28336, 33733, 39866, 46800, 54600, 63336, 73080, 83906, 95893, 109120, 123669, 139626, 157080, 176120, 196840, 219336, 243706, 270053, 298480
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    Table[Floor[n(n-1)(n-2)(n-3)/9],{n,0,40}] (* or *) LinearRecurrence[ {4,-6,4,-1,0,0,0,0,1,-4,6,-4,1},{0,0,0,0,2,13,40,93,186,336,560,880,1320},40] (* Harvey P. Dale, Jan 01 2019 *)
  • PARI
    a(n) = floor(n*(n-1)*(n-2)*(n-3)/9); \\ Jinyuan Wang, Feb 28 2020

Formula

From R. J. Mathar, Apr 15 2010: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-9) - 4*a(n-10) + 6*a(n-11) - 4*a(n-12) + a(n-13).
G.f.: x^4*(2 + 5*x + 3*x^3 + 4*x^4 + 3*x^5 + 5*x^7 + 2*x^8) / ( (1-x)^5*(1+x+x^2)*(x^6+x^3+1) ). (End)

Extensions

More terms from Jinyuan Wang, Feb 28 2020