A011951 Number of Barlow packings with group P3(bar)m1(S) that repeat after 2n layers.
0, 0, 0, 0, 2, 3, 9, 16, 39, 75, 165, 318, 672, 1323, 2703, 5376, 10880, 21663, 43605, 87040, 174564, 348843, 698709, 1396680, 2795518, 5589675, 11183325, 22364160, 44736512, 89467320, 178951509, 357892096, 715816464, 1431612075, 2863289674, 5726534688, 11453202432
Offset: 1
Links
- J. E. Iglesias, Enumeration of closest-packings by the space group: a simple approach, Z. Krist. 221 (2006) 237-245, eq (24).
- T. J. McLarnan, The numbers of polytypes in close packings and related structures, Zeits. Krist. 155, 269-291 (1981).
Programs
-
Maple
# eq (6) in Iglesias Z Krist. 221 (2006) b := proc(p,q) local d; a := 0 ; for d from 1 to min(p,q) do if modp(p,d)=0 and modp(q,d)=0 then ph := floor(p/2/d) ; qh := floor(q/2/d) ; a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ; end if ; end do: a ; end proc: # eq (17) in Iglesias Z Krist. 221 (2006) bt := proc(p,q) if type(p+q,'odd') then b(p,q) ; else 0; end if; end proc: # corrected eq (15) in Iglesias Z Krist. 221 (2006), d|(p/2) and d|(q/2) bbtemp := proc(p,q) local d,ph,qh; a := 0 ; for d from 1 to min(p,q) do if modp(p,2*d)=0 and modp(q,2*d)=0 then ph := p/2/d ; qh := q/2/d ; a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ; end if ; end do: a ; end proc: # eq (16) in Iglesias Z Krist. 221 (2006) bb := proc(p,q) if type(p,'even') and type(q,'even') then ( bbtemp(p,q)-bt(p/2,q/2) )/2 ; else 0 ; end if; end proc: # eq (25) in Iglesias Z Krist. 221 (2006) FracR := proc(Phalf) if type(Phalf,'even') then (bb(Phalf,Phalf)-A045683(Phalf))/2 ; else 0; end if; end proc: # eq (24) in Iglesias Z Krist. 221 (2006) A011951 := proc(n) local a,p,q,P ; P := 2*n ; a := FracR(P/2) ; for q from 0 to P do p := P-q ; if modp(p-q,3) = 0 and p < q then a := a+bb(p,q) ; end if; end do: a ; end proc: seq(A011951(n),n=1..40 ) ; # R. J. Mathar, Apr 15 2024
-
PARI
apply( {A011951(n)=my(P=2*n, b(p, q, f=1)=sum(d=1, min(p, q), if(p%(d*f)+q%(d*f)==0, moebius(d)*binomial(q\2\d+p\2\d, p\2\d))), bb(p,q)=if(p%2+q%2==0, b(p,q,2)-if((p+q)%4, b(p/2,q/2)))); sum(q=n+1, P, if(q%2==0 && (n-q)*2%3==0, bb(P-q,q)),if(n%2==0,bb(n,n)/2-A045683(n)))/2}, [1..44]) \\ M. F. Hasler, Jun 03 2025
Extensions
More terms from Sean A. Irvine, May 26 2025