cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011951 Number of Barlow packings with group P3(bar)m1(S) that repeat after 2n layers.

Original entry on oeis.org

0, 0, 0, 0, 2, 3, 9, 16, 39, 75, 165, 318, 672, 1323, 2703, 5376, 10880, 21663, 43605, 87040, 174564, 348843, 698709, 1396680, 2795518, 5589675, 11183325, 22364160, 44736512, 89467320, 178951509, 357892096, 715816464, 1431612075, 2863289674, 5726534688, 11453202432
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    # eq (6) in Iglesias Z Krist. 221 (2006)
    b := proc(p,q)
        local d;
        a := 0 ;
        for d from 1 to min(p,q) do
            if modp(p,d)=0 and modp(q,d)=0 then
                ph := floor(p/2/d) ;
                qh := floor(q/2/d) ;
                a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ;
            end if ;
        end do:
        a ;
    end proc:
    # eq (17) in Iglesias Z Krist. 221 (2006)
    bt := proc(p,q)
        if type(p+q,'odd') then
            b(p,q) ;
        else
            0;
        end if;
    end proc:
    # corrected eq (15) in Iglesias Z Krist. 221 (2006),  d|(p/2) and d|(q/2)
    bbtemp := proc(p,q)
        local d,ph,qh;
        a := 0 ;
        for d from 1 to min(p,q) do
            if modp(p,2*d)=0 and modp(q,2*d)=0 then
                ph := p/2/d ;
                qh := q/2/d ;
                a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ;
            end if ;
        end do:
        a ;
    end proc:
    # eq (16) in Iglesias Z Krist. 221 (2006)
    bb := proc(p,q)
        if type(p,'even') and type(q,'even') then
            ( bbtemp(p,q)-bt(p/2,q/2) )/2 ;
        else
            0 ;
        end if;
    end proc:
    # eq (25) in Iglesias Z Krist. 221 (2006)
    FracR := proc(Phalf)
        if type(Phalf,'even') then
            (bb(Phalf,Phalf)-A045683(Phalf))/2 ;
        else
            0;
        end if;
    end proc:
    # eq (24) in Iglesias Z Krist. 221 (2006)
    A011951 := proc(n)
        local a,p,q,P ;
        P := 2*n ;
        a := FracR(P/2) ;
        for q from 0 to P do
            p := P-q ;
            if modp(p-q,3) = 0 and p < q then
                a := a+bb(p,q) ;
            end if;
        end do:
        a ;
    end proc:
    seq(A011951(n),n=1..40 ) ; # R. J. Mathar, Apr 15 2024
  • PARI
    apply( {A011951(n)=my(P=2*n, b(p, q, f=1)=sum(d=1, min(p, q), if(p%(d*f)+q%(d*f)==0, moebius(d)*binomial(q\2\d+p\2\d, p\2\d))), bb(p,q)=if(p%2+q%2==0, b(p,q,2)-if((p+q)%4, b(p/2,q/2)))); sum(q=n+1, P, if(q%2==0 && (n-q)*2%3==0, bb(P-q,q)),if(n%2==0,bb(n,n)/2-A045683(n)))/2}, [1..44]) \\ M. F. Hasler, Jun 03 2025

Extensions

More terms from Sean A. Irvine, May 26 2025