cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011966 Third differences of Bell numbers.

Original entry on oeis.org

1, 5, 20, 87, 409, 2066, 11155, 64077, 389946, 2504665, 16923381, 119928232, 888980293, 6876320041, 55382419676, 463539664643, 4024626253845, 36189297168874, 336513491259647, 3231446022478129, 32004743929977258, 326548129128737469, 3428663026172389201
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n+4 with at least one singleton and with the smallest element in a singleton equal to 4. Alternatively, number of partitions of n+4 with at least one singleton and with the largest element in a singleton equal to n+1. - Olivier GERARD, Oct 29 2007

References

  • Olivier GĂ©rard and Karol A. Penson, A budget of set partition statistics, in preparation, unpublished as of Sep 22 2011.

Crossrefs

Programs

  • Maple
    a:= n-> add((-1)^(k+1)*binomial(3,k)*combinat['bell'](n+k), k=0..3):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 05 2008
  • Mathematica
    Differences[BellB[Range[0,30]],3]  (* Harvey P. Dale, Apr 21 2011 *)
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A011966_list, blist, b = [1], [2, 3, 5], 5
    for _ in range(1000):
        blist = list(accumulate([b]+blist))
        b = blist[-1]
        A011966_list.append(blist[-4]) # Chai Wah Wu, Sep 20 2014

Formula

G.f.: -(1-x+x^2)/x^2 + (1-x)^3/x^2/(G(0)-x) where G(k) = 1 - x*(k+1)/(1 - x/G(k+1) ); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
From Vaclav Kotesovec, Jul 28 2021: (Start)
a(n) = Bell(n+3) - 3*Bell(n+2) + 3*Bell(n+1) - Bell(n).
a(n) ~ n^3 * Bell(n) / LambertW(n)^3 * (1 - 3*LambertW(n)/n). (End)