A011972 Sequence formed by reading rows of triangle defined in A011971.
1, 2, 3, 5, 7, 10, 15, 20, 27, 37, 52, 67, 87, 114, 151, 203, 255, 322, 409, 523, 674, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147, 25287, 30304, 36401, 43833, 52922, 64077, 77821, 94828
Offset: 0
Examples
Triangle T(n, k) begins: [0] 1; [1] 2, 3; [2] 5, 7, 10; [3] 15, 20, 27, 37; [4] 52, 67, 87, 114, 151; [5] 203, 255, 322, 409, 523, 674; [6] 877, 1080, 1335, 1657, 2066, 2589, 3263; ...
Links
- Chai Wah Wu, Rows n = 0..200, flattened
Programs
-
Maple
T := (n, k) -> local i; add(binomial(k, i)*combinat:-bell(n - k + i + 1), i = 0..k): seq(seq(T(n, k), k=0..n), n = 0..9); # Peter Luschny, Dec 02 2023
-
Mathematica
T[n_, k_] := Sum[Binomial[k, i] BellB[n - k + i + 1], {i, 0, k}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 19 2019 *)
-
Python
from itertools import accumulate A011972_list = blist = [1] for _ in range(10**2): b = blist[-1] blist = list(accumulate([b]+blist)) A011972_list += blist[1:] # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
Comments