A011975 Covering numbers C(n,3,2).
1, 3, 4, 6, 7, 11, 12, 17, 19, 24, 26, 33, 35, 43, 46, 54, 57, 67, 70, 81, 85, 96, 100, 113, 117, 131, 136, 150, 155, 171, 176, 193, 199, 216, 222, 241, 247, 267, 274, 294, 301, 323, 330, 353, 361, 384, 392, 417, 425, 451, 460, 486
Offset: 3
References
- P. J. Cameron, Combinatorics, ..., Cambridge, 1994, see p. 121.
- CRC Handbook of Combinatorial Designs, 1996, p. 262.
- W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992.
Links
- T. D. Noe, Table of n, a(n) for n = 3..1000
- Marek Cygan, Marcin Pilipczuk and Michał Pilipczuk, Known algorithms for EDGE CLIQUE COVER are probably optimal, arXiv:1203.1754 [cs.DS], 2012.
- Oliver Goldschmidt, Dorit S. Hochbaum, Cor Hurkens and Gang Yu, Approximation Algorithms for the k-Clique Covering Problem, Journal of Discrete Mathematics, volume 9, issue 3, pages 492-509, 1995, doi: 10.1137/S089548019325232X.
- D. Gordon, La Jolla Repository of Coverings
- Jenö Lehel, The minimum number of triangles covering the edges of a graph, Journal of Graph Theory, volume 13, issue 3, pages 369-384, 1989.
- Uenal Mutlu (uenalm(AT)metronet.de), Tables of coverings
- Wikipedia, Clique Cover Problem.
- Index entries for covering numbers
Programs
-
Maple
L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Present sequence is L_1(n,3,2,1).
-
Mathematica
L[v_, k_, t_, m_] := Module[{t1 = m}, Do[t1 = Ceiling[t1*i/(i - (v - k))], {i, v - t + 1, v}]; t1]; Table[L[n, 3, 2, 1], {n, 3, 100}] (* T. D. Noe, Sep 28 2011 *)
Formula
Conjecture: G.f. ( -1-2*x-2*x^5+x^7+x^6-x^8 ) / ( (1+x+x^2)*(x^2-x+1)*(1+x)^2*(x-1)^3 ) with a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9). - R. J. Mathar, Aug 12 2012
a(n) = ceiling((n/3)*ceiling((n-1)/2)). - Nathaniel Johnston, Jan 10 2024
Comments