A012248 Expansion of e.g.f. exp(arcsinh(arcsin(x))).
1, 1, 1, 1, 1, 9, 49, 225, 897, 11025, 96801, 893025, 6803457, 108056025, 1275363153, 18261468225, 207592347393, 4108830350625, 60889593787713, 1187451971330625, 17888210916886017, 428670161650355625, 7679611833095218545, 189043541287806830625, 3530100224793651058305
Offset: 0
Keywords
Examples
1 + x + 1/2!*x^2 + 1/3!*x^3 + 1/4!*x^4 + 9/5!*x^5...
Programs
-
Mathematica
With[{nn=25},CoefficientList[Series[Exp[ArcSinh[ArcSin[x]]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Nov 02 2020 *)
-
PARI
x = 'x + O('x^30); Vec(serlaplace(exp(asinh(asin(x))))) \\ Michel Marcus, Mar 09 2017
Formula
E.g.f.: Q(0)-1, where Q(k) = 2 + arcsin(x)/(1 - arcsin(x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 19 2013
Extensions
More terms from Michel Marcus, Mar 09 2017