A012249 Volume of a certain rational polytope whose points with given denominator count certain sets of Standard Tableaux.
1, 2, 5, 24, 154, 1280, 13005, 156800, 2189726, 34793472, 620169186, 12259602432, 266267950740, 6304157663232, 161624247752253, 4461403146190848, 131936409635518774, 4161949856324648960, 139508340802911502422, 4952126960969786064896, 185585825504872433198636
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..350
- MathOverflow, Access to a preprint by D. N. Verma, Feb 2013.
- D.-N. Verma, Towards Classifying Finite Point-Set Configurations, 1997, Unpublished. [Scanned copy of annotated version of preprint given to me by the author in 1997. - _N. J. A. Sloane_, Oct 03 2021]
Programs
-
Magma
A012249:= func< n | 2^(n-2)*(&+[(-1)^(j+1)*Binomial(n+2,j)*(n/2-j+1)^(n-1) : j in [0..1+Floor(n/2)]] ) >; [A012249(n): n in [1..30]]; // G. C. Greubel, Feb 28 2024
-
Maple
A012249 := proc(n) add( (-1)^(j+1)*(n/2-j+1)^(n-1)*binomial(n+2,j),j=0..ceil(n/2)) ; %*2^(n-2) ; end proc: seq(A012249(n),n=1..20) ; # R. J. Mathar, Oct 07 2021
-
Mathematica
a[n_] := 2^(n-2)*Sum[(-1)^(j+1)*(n/2-j+1)^(n-1)*Binomial[n+2, j], {j, 0, Ceiling[n/2]}]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Nov 25 2013, after Richard Stanley's formula in A012250. *)
-
SageMath
def A012249(n): return 2^(n-2)*sum( (-1)^(j+1)*binomial(n+2,j)*(n/2-j+1)^(n-1) for j in range(n//2+2)) [A012249(n) for n in range(1,31)] # G. C. Greubel, Feb 28 2024
Formula
a(n) ~ 3^(3/2) * 2^(n+1) * n^(n-2) / exp(n). - Vaclav Kotesovec, Oct 07 2021
a(n) = 2^(n-2)*Sum_{j=0..ceiling(n/2)} (-1)^(j+1)*(n/2-j+1)^(n-1) * binomial(n+2, j) (based on Richard Stanley's formula in A012250). - Jean-François Alcover, Nov 25 2013
Extensions
Corrected and extended by R. J. Mathar, Oct 07 2021
Edited by N. J. A. Sloane, Oct 07 2021
Comments