cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012249 Volume of a certain rational polytope whose points with given denominator count certain sets of Standard Tableaux.

Original entry on oeis.org

1, 2, 5, 24, 154, 1280, 13005, 156800, 2189726, 34793472, 620169186, 12259602432, 266267950740, 6304157663232, 161624247752253, 4461403146190848, 131936409635518774, 4161949856324648960, 139508340802911502422, 4952126960969786064896, 185585825504872433198636
Offset: 1

Views

Author

Keywords

Comments

It should be noticed that Richard Stanley's formula (cf. A012250) gives a(9) = 2189726 instead of 2189725 as given in Verma (1997). - Jean-François Alcover, Nov 28 2013

Crossrefs

Cf. A012250.
Row sums of A348211.

Programs

  • Magma
    A012249:= func< n | 2^(n-2)*(&+[(-1)^(j+1)*Binomial(n+2,j)*(n/2-j+1)^(n-1) : j in [0..1+Floor(n/2)]] ) >;
    [A012249(n): n in [1..30]]; // G. C. Greubel, Feb 28 2024
    
  • Maple
    A012249 := proc(n)
         add( (-1)^(j+1)*(n/2-j+1)^(n-1)*binomial(n+2,j),j=0..ceil(n/2)) ;
         %*2^(n-2) ;
    end proc:
    seq(A012249(n),n=1..20) ; # R. J. Mathar, Oct 07 2021
  • Mathematica
    a[n_] := 2^(n-2)*Sum[(-1)^(j+1)*(n/2-j+1)^(n-1)*Binomial[n+2, j], {j, 0, Ceiling[n/2]}]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Nov 25 2013, after Richard Stanley's formula in A012250. *)
  • SageMath
    def A012249(n): return 2^(n-2)*sum( (-1)^(j+1)*binomial(n+2,j)*(n/2-j+1)^(n-1) for j in range(n//2+2))
    [A012249(n) for n in range(1,31)] # G. C. Greubel, Feb 28 2024

Formula

a(n) ~ 3^(3/2) * 2^(n+1) * n^(n-2) / exp(n). - Vaclav Kotesovec, Oct 07 2021
a(n) = 2^(n-2)*Sum_{j=0..ceiling(n/2)} (-1)^(j+1)*(n/2-j+1)^(n-1) * binomial(n+2, j) (based on Richard Stanley's formula in A012250). - Jean-François Alcover, Nov 25 2013

Extensions

Corrected and extended by R. J. Mathar, Oct 07 2021
Edited by N. J. A. Sloane, Oct 07 2021