cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: D n Verma

D n Verma's wiki page.

D n Verma has authored 9 sequences.

A097552 Number of positive words of length n in the monoid Br_5 of positive braids on 6 strands.

Original entry on oeis.org

1, 5, 20, 67, 209, 630, 1873, 5540, 16357, 48265, 142387, 420027, 1239006, 3654820, 10780958, 31801551, 93807834, 276713194, 816245143, 2407749755, 7102350204, 20950424039, 61799299470, 182294802589, 537730934397
Offset: 0

Author

D n Verma, Aug 16 2004

Keywords

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1+x^2)^3/(1-5*x+8*x^2-7*x^3+4*x^4-x^5) )); // G. C. Greubel, Apr 19 2021
    
  • Mathematica
    LinearRecurrence[{5,-8,7,-4,1}, {1,5,20,67,209,630,1873}, 40] (* G. C. Greubel, Apr 19 2021 *)
  • Sage
    def A097552_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)^3/(1-5*x+8*x^2-7*x^3+4*x^4-x^5) ).list()
    A097552_list(40) # G. C. Greubel, Apr 19 2021

Formula

G.f.: (1 + x^2)^3/(1 - 5*x + 8*x^2 - 7*x^3 + 4*x^4 - x^5). - T. D. Noe, Nov 02 2006

Extensions

Corrected by T. D. Noe, Nov 02 2006

A097551 Number of positive words of length n in the monoid Br_4 of positive braids on 5 strands.

Original entry on oeis.org

1, 4, 13, 37, 101, 273, 737, 1990, 5374, 14513, 39194, 105848, 285855, 771985, 2084836, 5630344, 15205404, 41063976, 110898081, 299493268, 808816679, 2184304257, 5898969706, 15930859211, 43023152830, 116189067703
Offset: 0

Author

D n Verma, Aug 16 2004

Keywords

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( (1+x^2)^2/(1-4*x+5*x^2-5*x^3+3*x^4-x^5) )); // G. C. Greubel, Apr 19 2021
    
  • Mathematica
    <Ryan Propper, Sep 27 2005 *)
    LinearRecurrence[{4,-5,5,-3,1}, {1,4,13,37,101}, 51] (* G. C. Greubel, Apr 19 2021 *)
  • Sage
    def A097551_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)^2/(1-4*x+5*x^2-5*x^3+3*x^4-x^5) ).list()
    A097551_list(50) # G. C. Greubel, Apr 19 2021

Formula

G.f.: (1 + x^2)^2/(1 - 4*x + 5*x^2 - 5*x^3 + 3*x^4 - x^5).

Extensions

More terms from Ryan Propper, Sep 27 2005

A097553 Number of positive words of length n in the monoid Br_6 of positive braids on 7 strands.

Original entry on oeis.org

1, 6, 27, 101, 346, 1131, 3611, 11396, 35761, 111906, 349700, 1092039, 3409031, 10640179, 33206991, 103631414, 323402952, 1009233980, 3149469548, 9828376731, 30670834516, 95712596642, 298684343689, 932085486213, 2908700435744
Offset: 0

Author

D n Verma, Aug 16 2004

Keywords

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( (1+x^2)^4/(1-6*x+13*x^2-17*x^3+17*x^4-11*x^5+5*x^6-x^7) )); // G. C. Greubel, Apr 20 2021
    
  • Mathematica
    CoefficientList[Series[(1+n^2)^4/(1-6n+13n^2-17n^3+17n^4-11n^5+5n^6-n^7),{n,0,30}],n] (* Harvey P. Dale, Sep 27 2019 *)
    LinearRecurrence[{6,-13,17,-17,11,-5,1}, {1,6,27,101,346,1131,3611,11396,35761}, 40] (* G. C. Greubel, Apr 20 2021 *)
  • Sage
    def A097553_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)^4/(1-6*x+13*x^2-17*x^3+17*x^4-11*x^5+5*x^6-x^7) ).list()
    A097553_list(50) # G. C. Greubel, Apr 20 2021

Formula

G.f.: (1 +x^2)^4/(1 -6*x +13*x^2 -17*x^3 +17*x^4 -11*x^5 +5*x^6 -x^7).

Extensions

Corrected and extended by Max Alekseyev, Jun 17 2011

A097554 Number of positive words of length n in the monoid Br_7 of positive braids on 8 strands.

Original entry on oeis.org

1, 7, 36, 151, 570, 2019, 6893, 23034, 76020, 249077, 812614, 2644447, 8592693, 27895296, 90510106, 293576779, 952053411, 3087093728, 10009389358, 32452403488, 105214363653, 341111617862, 1105895184121, 3585328906357, 11623651559099
Offset: 0

Author

D n Verma, Aug 16 2004

Keywords

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1+x^2)^5/(1-7*x+18*x^2-25*x^3+24*x^4-15*x^5+6*x^6-x^7) )); // G. C. Greubel, Apr 20 2021
    
  • Mathematica
    LinearRecurrence[{7,-18,25,-24,15,-6,1}, {1,7,36,151,570,2019,6893,23034,76020, 249077,812614}, 41] (* G. C. Greubel, Apr 20 2021 *)
  • Sage
    def A097554_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)^5/(1-7*x+18*x^2-25*x^3+24*x^4-15*x^5+6*x^6-x^7) ).list()
    A097554_list(40) # G. C. Greubel, Apr 20 2021

Formula

G.f.: (1 +x^2)^5/(1 -7*x +18*x^2 -25*x^3 +24*x^4 -15*x^5 +6*x^6 -x^7).

Extensions

Corrected and extended by Max Alekseyev, Jun 17 2011

A097555 Number of positive words of length n in the monoid Br_8 of positive braids on 9 strands.

Original entry on oeis.org

1, 8, 45, 205, 831, 3133, 11294, 39585, 136302, 464026, 1568151, 5273999, 17681042, 59149925, 197598856, 659479754, 2199585548, 7333198205, 24441067317, 81444567492, 271360676916, 904051477063, 3011711782025, 10032660556567, 33420042561972
Offset: 0

Author

D n Verma, Aug 16 2004

Keywords

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1+x^2)^6 /(1-8*x+25*x^2-45*x^3+59*x^4-57*x^5+41*x^6-21*x^7+7*x^8-x^9) )); // G. C. Greubel, Apr 20 2021
    
  • Mathematica
    LinearRecurrence[{8,-25,45,-59,57,-41,21,-7,1}, {1,8,45,205,831,3133,11294,39585, 136302, 464026, 1568151, 5273999, 17681042}, 41] (* G. C. Greubel, Apr 20 2021 *)
  • Sage
    def A097555_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)^6 /(1-8*x+25*x^2-45*x^3+59*x^4-57*x^5+41*x^6-21*x^7+7*x^8-x^9) ).list()
    A097555_list(40) # G. C. Greubel, Apr 20 2021

Formula

G.f.: (1 +x^2)^6 /(1 -8*x +25*x^2 -45*x^3 +59*x^4 -57*x^5 +41*x^6 -21*x^7 +7*x^8 -x^9).

Extensions

Edited and extended by Max Alekseyev, Jun 17 2011

A097556 Number of positive words of length n in the monoid Br_9 of positive braids on 10 strands.

Original entry on oeis.org

1, 9, 56, 279, 1223, 4932, 18833, 69345, 249166, 880525, 3076295, 10662459, 36749785, 126161246, 431880044, 1475412473, 5032964258, 17150277106, 58395929325, 198723871661, 675989712225, 2298799014859, 7815699898677, 26568450635871
Offset: 0

Author

D n Verma, Aug 16 2004

Keywords

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( (1+x^2)^7/(1-9*x+32*x^2-63*x^3+84*x^4-81*x^5+56*x^6-27*x^7+8*x^8-x^9) )); // G. C. Greubel, Apr 20 2021
    
  • Mathematica
    CoefficientList[Series[(1+x^2)^7/(1-9*x+32*x^2-63*x^3+84*x^4-81*x^5+56*x^6-27*x^7+8*x^8-x^9), {x,0,50}], x] (* G. C. Greubel, Apr 20 2021 *)
  • Sage
    def A097556_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)^7/(1-9*x+32*x^2-63*x^3+84*x^4-81*x^5+56*x^6-27*x^7+8*x^8-x^9) ).list()
    A097556_list(50) # G. C. Greubel, Apr 20 2021

Formula

G.f.: (1 +x^2)^7/(1 -9*x +32*x^2 -63*x^3 +84*x^4 -81*x^5 +56*x^6 -27*x^7 +8*x^8 -x^9).

Extensions

Edited and extended by Max Alekseyev, Jun 17 2011

A097550 Number of positive words of length n in the monoid Br_3 of positive braids on 4 strands.

Original entry on oeis.org

1, 3, 8, 19, 44, 102, 237, 551, 1281, 2978, 6923, 16094, 37414, 86977, 202197, 470051, 1092736, 2540303, 5905488, 13728594, 31915109, 74193627, 172479257, 400965626, 932131991, 2166943978, 5037533578, 11710844769, 27224411129, 63289077427
Offset: 0

Author

D n Verma, Aug 16 2004

Keywords

Programs

  • Magma
    [n le 3 select Fibonacci(2*n) else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Apr 19 2021
    
  • Maple
    a:= n-> (<<1|1|2>>. <<3|1|0>, <-2|0|1>, <1|0|0>>^n)[1$2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 24 2008
  • Mathematica
    LinearRecurrence[{3,-2,1},{1,3,8},30] (* Harvey P. Dale, Jul 10 2019 *)
  • Sage
    @CachedFunction
    def A095263(n): return sum( binomial(n+j+2, 3*j+2) for j in (0..n//2) )
    def A097550(n): return A095263(n) +A095263(n-2)
    [A097550(n) for n in (0..30)] # G. C. Greubel, Apr 19 2021

Formula

G.f.: (1+x^2)/(1 - 3*x+ 2*x^2 - x^3).
a(n) = term (1,1) in the 1 X 3 matrix [1,1,2].[3,1,0; -2,0,1; 1,0,0]^n. - Alois P. Heinz, Jul 24 2008
a(n) = A095263(n) + A095263(n-2). - G. C. Greubel, Apr 19 2021

Extensions

More terms from Ryan Propper, Sep 27 2005

A012250 a(n) = A012249(2*n) / 2^(2*n-1).

Original entry on oeis.org

1, 3, 40, 1225, 67956, 5986134, 769550496, 136151219061, 31753157473180, 9445432588519642, 3491687484842443536, 1570713950508131878618, 845034544811095556274280, 535857105694970626486925100, 395590680969537758258609408640, 336386798400777928783348084420365
Offset: 1

Author

Keywords

Crossrefs

Cf. A012249.

Programs

  • Magma
    A012250:= func< n | (&+[(-1)^(j+1)*Binomial(2*n+2,j)*(n-j+1)^(2*n-1) : j in [0..n]])/2 >;
    [A012250(n): n in [1..20]]; // G. C. Greubel, Feb 27 2024
    
  • Maple
    A012250 := n -> 1/2*add((-1)^(j+1)*binomial(2*n+2,j)*(n-j+1)^(2*n-1)*(2*j-2*n-1),j=0..n); seq(A012250(i),i=1..9); # Peter Luschny, Mar 03 2013
  • Mathematica
    Table[Sum[(-1)^(j + 1)*Binomial[2*n + 2, j]*(n - j + 1)^(2*n - 1)/2, {j, 0, n}], {n, 15}] (* Wesley Ivan Hurt, Nov 11 2014 *)
  • SageMath
    def A012250(n): return sum( (-1)^(j+1)*binomial(2*n+2,j)*(n-j+1)^(2*n-1) for j in range(n+1))/2
    [A012250(n) for n in range(1,21)] # G. C. Greubel, Feb 27 2024

Formula

a(n) = (1/2)*Sum_{j=0..n} (-1)^(j+1)*binomial(2*n+2,j)*(n-j+1)^(2*n-1). - Richard Stanley, Mar 31 2013
a(n) ~ 3^(3/2) * 2^(2*n) * n^(2*n-2) / exp(2*n). - Vaclav Kotesovec, Oct 07 2021

Extensions

Edited and extended using Richard Stanley's formula. - N. J. A. Sloane, Jun 10 2013

A012249 Volume of a certain rational polytope whose points with given denominator count certain sets of Standard Tableaux.

Original entry on oeis.org

1, 2, 5, 24, 154, 1280, 13005, 156800, 2189726, 34793472, 620169186, 12259602432, 266267950740, 6304157663232, 161624247752253, 4461403146190848, 131936409635518774, 4161949856324648960, 139508340802911502422, 4952126960969786064896, 185585825504872433198636
Offset: 1

Author

Keywords

Comments

It should be noticed that Richard Stanley's formula (cf. A012250) gives a(9) = 2189726 instead of 2189725 as given in Verma (1997). - Jean-François Alcover, Nov 28 2013

Crossrefs

Cf. A012250.
Row sums of A348211.

Programs

  • Magma
    A012249:= func< n | 2^(n-2)*(&+[(-1)^(j+1)*Binomial(n+2,j)*(n/2-j+1)^(n-1) : j in [0..1+Floor(n/2)]] ) >;
    [A012249(n): n in [1..30]]; // G. C. Greubel, Feb 28 2024
    
  • Maple
    A012249 := proc(n)
         add( (-1)^(j+1)*(n/2-j+1)^(n-1)*binomial(n+2,j),j=0..ceil(n/2)) ;
         %*2^(n-2) ;
    end proc:
    seq(A012249(n),n=1..20) ; # R. J. Mathar, Oct 07 2021
  • Mathematica
    a[n_] := 2^(n-2)*Sum[(-1)^(j+1)*(n/2-j+1)^(n-1)*Binomial[n+2, j], {j, 0, Ceiling[n/2]}]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Nov 25 2013, after Richard Stanley's formula in A012250. *)
  • SageMath
    def A012249(n): return 2^(n-2)*sum( (-1)^(j+1)*binomial(n+2,j)*(n/2-j+1)^(n-1) for j in range(n//2+2))
    [A012249(n) for n in range(1,31)] # G. C. Greubel, Feb 28 2024

Formula

a(n) ~ 3^(3/2) * 2^(n+1) * n^(n-2) / exp(n). - Vaclav Kotesovec, Oct 07 2021
a(n) = 2^(n-2)*Sum_{j=0..ceiling(n/2)} (-1)^(j+1)*(n/2-j+1)^(n-1) * binomial(n+2, j) (based on Richard Stanley's formula in A012250). - Jean-François Alcover, Nov 25 2013

Extensions

Corrected and extended by R. J. Mathar, Oct 07 2021
Edited by N. J. A. Sloane, Oct 07 2021