A095263
a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n).
Original entry on oeis.org
1, 3, 7, 16, 37, 86, 200, 465, 1081, 2513, 5842, 13581, 31572, 73396, 170625, 396655, 922111, 2143648, 4983377, 11584946, 26931732, 62608681, 145547525, 338356945, 786584466, 1828587033, 4250949112, 9882257736, 22973462017, 53406819691
Offset: 1
a(9) = 1081 = 3*465 - 2*200 + 86.
M^9 * [1 0 0] = [a(7) a(8) a(9)] = [200 465 1081].
G.f. = x + 3*x^2 + 7*x^3 + 16*x^4 + 37*x^5 + 86*x^6 + 200*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. R. Dedrickson III, Compositions, Bijections, and Enumerations Thesis, Jack N. Averitt College of Graduate Studies, Georgia Southern University, 2012.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
-
I:=[1,3,7]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 12 2021
-
A:= gfun:-rectoproc({a(n+3)=3*a(n+2)-2*a(n+1)+a(n),a(1)=1,a(2)=3,a(3)=7},a(n),remember):
seq(A(n),n=1..100); # Robert Israel, Sep 15 2014
-
a[1]=1; a[2]=3; a[3]=7; a[n_]:= a[n]= 3a[n-1] -2a[n-2] +a[n-3]; Table[a[n], {n, 22}] (* Or *)
a[n_]:= (MatrixPower[{{0,1,2,3}, {1,2,3,0}, {2,3,0,1}, {3,0,1,2}}, n].{{1}, {0}, {0}, {0}})[[2, 1]]; Table[ a[n], {n, 22}] (* Robert G. Wilson v, Jun 16 2004 *)
RecurrenceTable[{a[1]==1,a[2]==3,a[3]==7,a[n+3]==3a[n+2]-2a[n+1]+a[n]},a,{n,30}] (* Harvey P. Dale, Sep 17 2022 *)
-
[sum( binomial(n+k+1,3*k+2) for k in (0..(n-1)//2)) for n in (1..30)] # G. C. Greubel, Apr 12 2021
A034943
Binomial transform of Padovan sequence A000931.
Original entry on oeis.org
1, 1, 1, 2, 5, 12, 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, 128801, 299426, 696081, 1618192, 3761840, 8745217, 20330163, 47261895, 109870576, 255418101, 593775046, 1380359512, 3208946545
Offset: 0
G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 28*x^6 + 65*x^7 + 151*x^8 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Miklos Bona and Rebecca Smith, Pattern avoidance in permutations and their squares, arXiv:1901.00026 [math.CO], 2018. See H(z), Ex. 4.1.
- Richard Choulet, Curtz like Transformation
- Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227. - From _N. J. A. Sloane_, Feb 01 2013
- Stoyan Dimitrov, Sorting by shuffling methods and a queue, arXiv:2103.04332 [math.CO], 2021.
- Phan Thuan Do, Thi Thu Huong Tran, and Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [cs.DM], 2018.
- Brian Hopkins and Hua Wang, Restricted Color n-color Compositions, arXiv:2003.05291 [math.CO], 2020.
- Jia Huang and Erkko Lehtonen, Associative-commutative spectra for some varieties of groupoids, arXiv:2401.15786 [math.CO], 2024. See p. 18.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 904
- H. Magnusson and H. Ulfarsson, Algorithms for discovering and proving theorems about permutation patterns, arXiv preprint arXiv:1211.7110 [math.CO], 2012.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016
- Vincent Vatter, Finding regular insertion encodings for permutation classes, arXiv:0911.2683 [math.CO], 2009.
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
-
[n le 3 select 1 else 3*Self(n-1)-2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
-
A034943 := proc(n): add(binomial(n+k-1, 3*k), k=0..floor(n/2)) end: seq(A034943(n), n=0..28); # Johannes W. Meijer, Aug 16 2011
-
LinearRecurrence[{3,-2,1},{1,1,1},30] (* Harvey P. Dale, Aug 11 2017 *)
-
{a(n) = if( n<1, n = 0-n; polcoeff( (1 - x + x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n), n = n-1; polcoeff( (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, Mar 31 2012 */
-
@CachedFunction
def a(n): # a = A034943
if (n<3): return 1
else: return 3*a(n-1) - 2*a(n-2) + a(n-3)
[a(n) for n in range(51)] # G. C. Greubel, Apr 22 2023
A052921
Expansion of (1 - x)/(1 - 3*x + 2*x^2 - x^3).
Original entry on oeis.org
1, 2, 4, 9, 21, 49, 114, 265, 616, 1432, 3329, 7739, 17991, 41824, 97229, 226030, 525456, 1221537, 2839729, 6601569, 15346786, 35676949, 82938844, 192809420, 448227521, 1042002567, 2422362079, 5631308624, 13091204281, 30433357674, 70748973084, 164471408185
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 21*x^4 + 49*x^5 + 114*x^6 + 265*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
- I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 905
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
-
a:=[1,2,4];; for n in [4..40] do a[n]:=3*a[n-1]-2*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Oct 16 2019
-
I:=[1,2,4]; [n le 3 select I[n] else 3*Self(n-1)-2*Self(n-2) +Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-3*x+2*x^2-x^3) )); // Marius A. Burtea, Oct 16 2019
-
spec := [S,{S=Sequence(Union(Z,Z,Prod(Sequence(Z),Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..29);
A052921 := proc(n): add(binomial(n+k+1, n-2*k),k=0..n+1) end: seq(A052921(n), n=0..29); # Johannes W. Meijer, Aug 16 2011
-
LinearRecurrence[{3,-2,1},{1,2,4},40] (* Vincenzo Librandi, Feb 14 2012 *)
CoefficientList[Series[(1-x)/(1-3*x+2*x^2-x^3),{x,0,30}],x] (* Harvey P. Dale, Nov 09 2019 *)
-
my(x='x+O('x^40)); Vec((1-x)/(1 -3*x +2*x^2 -x^3)) \\ G. C. Greubel, Oct 16 2019
-
def A077952_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-x)/(1 -3*x +2*x^2 -x^3)).list()
A077952_list(40) # G. C. Greubel, Oct 16 2019
A135364
First column of a triangle - see Comments lines.
Original entry on oeis.org
1, 2, 3, 7, 17, 40, 93, 216, 502, 1167, 2713, 6307, 14662, 34085, 79238, 184206, 428227, 995507, 2314273, 5380032, 12507057, 29075380, 67592058, 157132471, 365288677, 849193147, 1974134558, 4589306057, 10668842202
Offset: 0
-
I:=[3,7,17]; [1,2] cat [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..51]]; // G. C. Greubel, Apr 19 2021
-
a:= n-> `if`(n=0, 1, (<<7|3|2>> .<<3|1|0>, <-2|0|1>, <1|0|0>>^(n-1))[1, 3]):
seq(a(n), n=0..50); # Alois P. Heinz, Jul 24 2008
-
LinearRecurrence[{3,-2,1}, {1,2,3,7,17}, 51] (* G. C. Greubel, Oct 11 2016; Apr 19 2021 *)
-
@CachedFunction
def A095263(n): return sum( binomial(n+j+2, 3*j+2) for j in (0..n//2) )
def A135364(n): return 1 if n==0 else 2*A095263(n-1) -3*A095263(n-2) +2*A095263(n-3)
[A135364(n) for n in (0..50)] # G. C. Greubel, Apr 19 2021
A136303
Expansion of g.f. (1 +x^2)/((1-x)^2*(1 -3*x +2*x^2 -x^3)).
Original entry on oeis.org
1, 5, 17, 48, 123, 300, 714, 1679, 3925, 9149, 21296, 49537, 115192, 267824, 622653, 1447533, 3365149, 7823068, 18186475, 42278476, 98285586, 228486323, 531166317, 1234811937, 2870589548, 6673311137, 15513566304, 36064666240, 83840177305
Offset: 0
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x^2)/((1-x)^2*(1-3*x+2*x^2-x^3)) )); // G. C. Greubel, Apr 19 2021
-
A136303:= n-> -2*(n+2) + add( (5*binomial(n+k+2, 3*k+2) - 4*binomial(n +k+1, 3*k+2) + 2*binomial(n+k, 3*k+2)), k=0..n/2 );
seq(A136303(n), n=0..40); # G. C. Greubel, Apr 19 2021
-
LinearRecurrence[{5,-9,8,-4,1},{1,5,17,48,123},40] (* Harvey P. Dale, Apr 01 2018 *)
-
def A136303_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x^2)/((1-x)^2*(1-3*x+2*x^2-x^3)) ).list()
A136303_list(40) # G. C. Greubel, Apr 19 2021
A136304
Expansion of g.f. (1-z)^2*(1-sqrt(1-4*z))/(2*z*(1 - 3*z + 2*z^2 - z^3)).
Original entry on oeis.org
1, 2, 5, 14, 40, 116, 344, 1047, 3273, 10500, 34503, 115838, 396244, 1377221, 4851665, 17285662, 62173297, 225424527, 822919439, 3021713140, 11151957809, 41340655956, 153853915410, 574593145517, 2152679745351, 8087904580883, 30466311814036, 115036597198845
Offset: 0
-
A034943:= func< n | (&+[Binomial(n+j-1, 3*j): j in [0..Floor(n/2)]]) >;
[(&+[A034943(j+1)*Catalan(n-j): j in [0..n]]): n in [0..35]]; // G. C. Greubel, Apr 19 2021
-
A034943[n_]:= A034943[n]= Sum[Binomial[n+k-1, 3*k], {k, 0, n/2}];
Table[Sum[A034943[j+1]*CatalanNumber[n-j], {j,0,n}], {n,0,35}] (* G. C. Greubel, Apr 19 2021 *)
-
def A034943(n): return sum(binomial(n+j-1,3*j) for j in (0..n//2))
[sum(A034943(j+1)*catalan_number(n-j) for j in (0..n)) for n in (0..35)] # G. C. Greubel, Apr 19 2021
A136305
Expansion of g.f. (3 -x +2*x^2)/(1 -3*x +2*x^2 -x^3).
Original entry on oeis.org
3, 8, 20, 47, 109, 253, 588, 1367, 3178, 7388, 17175, 39927, 92819, 215778, 501623, 1166132, 2710928, 6302143, 14650705, 34058757, 79177004, 184064203, 427897358, 994740672, 2312491503, 5375890523, 12497429235, 29052998162, 67540026539, 157011512528
Offset: 0
-
[n le 3 select 2^(n-1)*(n+2) else 3*Self(n-1) - 2*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Apr 19 2021
-
LinearRecurrence[{3,-2,1}, {3,8,20}, 40] (* G. C. Greubel, Apr 19 2021 *)
CoefficientList[Series[(3-x+2x^2)/(1-3x+2x^2-x^3),{x,0,40}],x] (* Harvey P. Dale, Oct 15 2021 *)
-
@CachedFunction
def a(n): return 2^n*(n+3) if n<3 else sum((-1)^j*(3-j)*a(n-j-1) for j in (0..2))
[a(n) for n in (0..40)] # G. C. Greubel, Apr 19 2021
A137531
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3).
Original entry on oeis.org
1, 4, 10, 23, 53, 123, 286, 665, 1546, 3594, 8355, 19423, 45153, 104968, 244021, 567280, 1318766, 3065759, 7127025, 16568323, 38516678, 89540413, 208156206, 483904470, 1124941411, 2615171499, 6079536145, 14133206848, 32855719753, 76380281708, 177562612466
Offset: 0
-
LinearRecurrence[{3, -2, 1}, {1, 4, 10}, 100] (* G. C. Greubel, Feb 17 2017 *)
-
a=[1,4,10];for(i=1,99,a=concat(a,3*a[#a]-2*a[#a-1]+a[#a-2]));a \\ Charles R Greathouse IV, Jun 01 2011
-
Vec((1 + x) / (1 - 3*x + 2*x^2 - x^3) + O(x^40)) \\ Colin Barker, Feb 17 2017
A097551
Number of positive words of length n in the monoid Br_4 of positive braids on 5 strands.
Original entry on oeis.org
1, 4, 13, 37, 101, 273, 737, 1990, 5374, 14513, 39194, 105848, 285855, 771985, 2084836, 5630344, 15205404, 41063976, 110898081, 299493268, 808816679, 2184304257, 5898969706, 15930859211, 43023152830, 116189067703
Offset: 0
-
R:=PowerSeriesRing(Integers(), 50);
Coefficients(R!( (1+x^2)^2/(1-4*x+5*x^2-5*x^3+3*x^4-x^5) )); // G. C. Greubel, Apr 19 2021
-
<Ryan Propper, Sep 27 2005 *)
LinearRecurrence[{4,-5,5,-3,1}, {1,4,13,37,101}, 51] (* G. C. Greubel, Apr 19 2021 *)
-
def A097551_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x^2)^2/(1-4*x+5*x^2-5*x^3+3*x^4-x^5) ).list()
A097551_list(50) # G. C. Greubel, Apr 19 2021
A097552
Number of positive words of length n in the monoid Br_5 of positive braids on 6 strands.
Original entry on oeis.org
1, 5, 20, 67, 209, 630, 1873, 5540, 16357, 48265, 142387, 420027, 1239006, 3654820, 10780958, 31801551, 93807834, 276713194, 816245143, 2407749755, 7102350204, 20950424039, 61799299470, 182294802589, 537730934397
Offset: 0
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+x^2)^3/(1-5*x+8*x^2-7*x^3+4*x^4-x^5) )); // G. C. Greubel, Apr 19 2021
-
LinearRecurrence[{5,-8,7,-4,1}, {1,5,20,67,209,630,1873}, 40] (* G. C. Greubel, Apr 19 2021 *)
-
def A097552_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x^2)^3/(1-5*x+8*x^2-7*x^3+4*x^4-x^5) ).list()
A097552_list(40) # G. C. Greubel, Apr 19 2021
Showing 1-10 of 14 results.
Comments