cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A116585 An interleaving of three sequences: a(3n) = A000045(3n) = A014445(n). a(3n+1) = A000931(3n+5) = A052921(n). a(3n+2) = A003269(3n-1).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 8, 4, 5, 34, 9, 14, 144, 21, 36, 610, 49, 95, 2584, 114, 250, 10946, 265, 657, 46368, 616, 1728, 196418, 1432, 4544, 832040, 3329, 11949, 3524578, 7739, 31422, 14930352, 17991, 82629, 63245986, 41824, 217286, 267914296, 97229, 571388, 1134903170
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[1, 0] = 0; a[1, 1] = 1; a[1, n_Integer?Positive] := a[1, n] = a[1, n - 1] + a[1, n - 2] a[2, 0] = 0; a[2, 1] = 1; a[2, 2] = 1; a[2, n_Integer?Positive] := a[2, n] = a[2, n - 2] + a[2, n - 3] a[3, 0] = 0; a[3, 1] = a[3, 2] = a[3, 3] = 1; a[3, n_Integer?Positive] := a[3, n] = a[3, n - 1] + a[3, n - 4] b = Table[a[1 + Mod[n, 3], n], {n, 0, 25}]

Extensions

Edited by N. J. A. Sloane, Apr 09 2008
More terms from Amiram Eldar, Jun 09 2025

A000931 Padovan sequence (or Padovan numbers): a(n) = a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 0.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n into parts congruent to 2 mod 3 (offset -1). - Vladeta Jovovic, Feb 09 2005
a(n) is the number of compositions of n into parts that are odd and >= 3. Example: a(10)=3 counts 3+7, 5+5, 7+3. - David Callan, Jul 14 2006
Referred to as N0102 in R. K. Guy's "Anyone for Twopins?" - Rainer Rosenthal, Dec 05 2006
Zagier conjectures that a(n+3) is the maximum number of multiple zeta values of weight n > 1 which are linearly independent over the rationals. - Jonathan Sondow and Sergey Zlobin (sirg_zlobin(AT)mail.ru), Dec 20 2006
Starting with offset 6: (1, 1, 2, 2, 3, 4, 5, ...) = INVERT transform of A106510: (1, 1, -1, 0, 1, -1, 0, 1, -1, ...). - Gary W. Adamson, Oct 10 2008
Starting with offset 7, the sequence 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, ... is called the Fibonacci quilt sequence by Catral et al., in Fib. Q. 2017. - N. J. A. Sloane, Dec 24 2021
Triangle A145462: right border = A000931 starting with offset 6. Row sums = Padovan sequence starting with offset 7. - Gary W. Adamson, Oct 10 2008
Starting with offset 3 = row sums of triangle A146973 and INVERT transform of [1, -1, 2, -2, 3, -3, ...]. - Gary W. Adamson, Nov 03 2008
a(n+5) corresponds to the diagonal sums of "triangle": 1; 1; 1,1; 1,1; 1,2,1; 1,2,1; 1,3,3,1; 1,3,3,1; 1,4,6,4,1; ..., rows of Pascal's triangle (A007318) repeated. - Philippe Deléham, Dec 12 2008
With offset 3: (1, 0, 1, 1, 1, 2, 2, ...) convolved with the tribonacci numbers prefaced with a "1": (1, 1, 1, 2, 4, 7, 13, ...) = the tribonacci numbers, A000073. (Cf. triangle A153462.) - Gary W. Adamson, Dec 27 2008
a(n) is also the number of strings of length (n-8) from an alphabet {A, B} with no more than one A or 2 B's consecutively. (E.g., n = 4: {ABAB,ABBA,BABA,BABB,BBAB} and a(4+8) = 5.) - Toby Gottfried, Mar 02 2010
p(n):=A000931(n+3), n >= 1, is the number of partitions of the numbers {1,2,3,...,n} into lists of length two or three containing neighboring numbers. The 'or' is inclusive. For n=0 one takes p(0)=1. For details see the W. Lang link. There the explicit formula for p(n) (analog of the Binet-de Moivre formula for Fibonacci numbers) is also given. Padovan sequences with different inputs are also considered there. - Wolfdieter Lang, Jun 15 2010
Equals the INVERTi transform of Fibonacci numbers prefaced with three 1's, i.e., (1 + x + x^2 + x^3 + x^4 + 2x^5 + 3x^6 + 5x^7 + 8x^8 + 13x^9 + ...). - Gary W. Adamson, Apr 01 2011
When run backwards gives (-1)^n*A050935(n).
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 0, 1; 1, 0, 1; 0, 1, 0] or of the 3 X 3 matrix [0, 1, 0; 0, 0, 1; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
Figure 4 of Brauchart et al., 2014, shows a way to "visualize the Padovan sequence as cuboid spirals, where the dimensions of each cuboid made up by the previous ones are given by three consecutive numbers in the sequence". - N. J. A. Sloane, Mar 26 2014
a(n) is the number of closed walks from a vertex of a unidirectional triangle containing an opposing directed edge (arc) between the second and third vertices. Equivalently the (1,1) entry of A^n where the adjacency matrix of digraph is A=(0,1,0;0,0,1;1,1,0). - David Neil McGrath, Dec 19 2014
Number of compositions of n-3 (n >= 4) into 2's and 3's. Example: a(12)=5 because we have 333, 3222, 2322, 2232, and 2223. - Emeric Deutsch, Dec 28 2014
The Hoffman (2015) paper "offers significant evidence that the number of quantities needed to generate the weight-n multiple harmonic sums mod p is" a(n). - N. J. A. Sloane, Jun 24 2016
a(n) gives the number of compositions of n-5 into odd parts where the order of the 1's does not matter. For example, a(11)=4 counts the following compositions of 6: (5,1)=(1,5), (3,3), (3,1,1,1)=(1,3,1,1)=(1,1,3,1)=(1,1,1,3), (1,1,1,1,1,1). - Gregory L. Simay, Aug 04 2016
For n > 6, a(n) is the number of maximal matchings in the (n-5)-path graph, maximal independent vertex sets and minimal vertex covers in the (n-6)-path graph, and minimal edge covers in the (n-5)-pan graph and (n-3)-path graphs. - Eric W. Weisstein, Mar 30, Aug 03, and Aug 07 2017
From James Mitchell and Wilf A. Wilson, Jul 21 2017: (Start)
a(2n + 5) + 2n - 4, n > 2, is the number of maximal subsemigroups of the monoid of order-preserving mappings on a set with n elements.
a(n + 6) + n - 3, n > 3, is the number of maximal subsemigroups of the monoid of order-preserving or reversing mappings on a set with n elements.
(End)
Has the property that the largest of any four consecutive terms equals the sum of the two smallest. - N. J. A. Sloane, Aug 29 2017 [David Nacin points out that there are many sequences with this property, such as 1,1,1,2,1,1,1,2,1,1,1,2,... or 2,3,4,5,2,3,4,5,2,3,4,5,... or 2,2,1,3,3, 4,1,4, 5,5,1,6,6, 7,1,7, 8,8,1,9,9, 10,1,10, ... (spaces added for clarity), and a conjecture I made here in 2017 was simply wrong. I have deleted it. - N. J. A. Sloane, Oct 23 2018]
a(n) is also the number of maximal cliques in the (n+6)-path complement graph. - Eric W. Weisstein, Apr 12 2018
a(n+8) is the number of solus bitstrings of length n with no runs of 3 zeros. - Steven Finch, Mar 25 2020
Named after the architect Richard Padovan (b. 1935). - Amiram Eldar, Jun 08 2021
Shannon et al. (2006) credit a French architecture student Gérard Cordonnier with the discovery of these numbers.
For n >= 3, a(n) is the number of sequences of 0s and 1s of length (n-2) that begin with a 0, end with a 0, contain no two consecutive 0s, and contain no three consecutive 1s. - Yifan Xie, Oct 20 2022
For n >= 2, a(n+5) is the number of ways to tile the 1xn board with dominoes and squares (ie. size 1x1) such that are either none or one squares between dominoes, none or one squares at both ends of the board, and there is at least one domino. For example, for n=6, a(11)=4 since the tilings are |2|2, |22|, 2|2| and 222 (where 2 represents a domino and | a square). - Enrique Navarrete, Aug 31 2024

Examples

			G.f. = 1 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 4*x^11 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
  • Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, Dawn Nelson, Zhao Pan, and Huanzhong Xu, Legal Decompositions Arising from Non-positive Linear Recurrences, Fib. Quart., 55:3 (2017), 252-275. [Note that there is an earlier version of this paper, with only five authors, on the arXiv in 2016. Note to editors: do not merge these two citations. - N. J. A. Sloane, Dec 24 2021]
  • Richard K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 10-11.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See P_n.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, L'univers des nombres, "La sculpture et les nombres", pp. 19-20, Belin-Pour La Science, Paris, 2000.
  • Hans van der Laan, Het plastische getal. XV lessen over de grondslagen van de architectonische ordonnantie. Leiden, E.J. Brill, 1967.
  • Don Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics (Paris, 1992), Vol. II, A. Joseph et al. (eds.), Birkhäuser, Basel, 1994, pp. 497-512.

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Closely related to A001608.
Doubling every term gives A291289.

Programs

  • GAP
    a:=[1,0,0];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # G. C. Greubel, Dec 30 2019
    
  • Haskell
    a000931 n = a000931_list !! n
    a000931_list = 1 : 0 : 0 : zipWith (+) a000931_list (tail a000931_list)
    -- Reinhard Zumkeller, Feb 10 2011
    
  • Magma
    I:=[1,0,0]; [n le 3 select I[n] else Self(n-2) + Self(n-3): n in [1..60]]; // Vincenzo Librandi, Jul 21 2015
    
  • Maple
    A000931 := proc(n) option remember; if n = 0 then 1 elif n <= 2 then 0 else procname(n-2)+procname(n-3); fi; end;
    A000931:=-(1+z)/(-1+z^2+z^3); # Simon Plouffe in his 1992 dissertation; gives sequence without five leading terms
    a[0]:=1; a[1]:=0; a[2]:=0; for n from 3 to 50 do a[n]:=a[n-2]+a[n-3]; end do; # Francesco Daddi, Aug 04 2011
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-x^2-x^3), {x, 0, 50}], x]
    a[0]=1; a[1]=a[2]=0; a[n_]:= a[n]= a[n-2] + a[n-3]; Table[a[n], {n, 0, 50}] (* Robert G. Wilson v, May 04 2006 *)
    LinearRecurrence[{0,1,1}, {1,0,0}, 50] (* Harvey P. Dale, Jan 10 2012 *)
    Table[RootSum[-1 -# +#^3 &, 5#^n -6#^(n+1) +4#^(n+2) &]/23, {n,0,50}] (* Eric W. Weisstein, Nov 09 2017 *)
  • PARI
    Vec((1-x^2)/(1-x^2-x^3) + O(x^50)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    {a(n) = if( n<0, polcoeff(1/(1+x-x^3) + x * O(x^-n), -n), polcoeff( (1 - x^2)/(1-x^2-x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
    
  • Python
    def aupton(nn):
        alst = [1, 0, 0]
        for n in range(3, nn+1): alst.append(alst[n-2]+alst[n-3])
        return alst
    print(aupton(49)) # Michael S. Branicky, Mar 28 2022
  • Sage
    def A000931_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^2)/(1-x^2-x^3) ).list()
    A000931_list(50) # G. C. Greubel, Dec 30 2019
    

Formula

G.f.: (1-x^2)/(1-x^2-x^3).
a(n) is asymptotic to r^n / (2*r+3) where r = 1.3247179572447... = A060006, the real root of x^3 = x + 1. - Philippe Deléham, Jan 13 2004
a(n)^2 + a(n+2)^2 + a(n+6)^2 = a(n+1)^2 + a(n+3)^2 + a(n+4)^2 + a(n+5)^2 (Barniville, Question 16884, Ed. Times 1911).
a(n+5) = a(0) + a(1) + ... + a(n).
a(n) = central and lower right terms in the (n-3)-th power of the 3 X 3 matrix M = [0 1 0 / 0 0 1 / 1 1 0]. E.g., a(13) = 7. M^10 = [3 5 4 / 4 7 5 / 5 9 7]. - Gary W. Adamson, Feb 01 2004
G.f.: 1/(1 - x^3 - x^5 - x^7 - x^9 - ...). - Jon Perry, Jul 04 2004
a(n+4) = Sum_{k=0..floor((n-1)/2)} binomial(floor((n+k-2)/3), k). - Paul Barry, Jul 06 2004
a(n+3) = Sum_{k=0..floor(n/2)} binomial(k, n-2k). - Paul Barry, Sep 17 2004, corrected by Greg Dresden and Zi Ye, Jul 06 2021
a(n+3) is diagonal sum of A026729 (as a number triangle), with formula a(n+3) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} (-1)^(n-k+i)*binomial(n-k, i)*binomial(i+k, i-k). - Paul Barry, Sep 23 2004
a(n) = a(n-1) + a(n-5) = A003520(n-4) + A003520(n-13) = A003520(n-3) - A003520(n-9). - Henry Bottomley, Jan 30 2005
a(n+3) = Sum_{k=0..floor(n/2)} binomial((n-k)/2, k)(1+(-1)^(n-k))/2. - Paul Barry, Sep 09 2005
The sequence 1/(1-x^2-x^3) (a(n+3)) is given by the diagonal sums of the Riordan array (1/(1-x^3), x/(1-x^3)). The row sums are A000930. - Paul Barry, Feb 25 2005
a(n) = A023434(n-7) + 1 for n >= 7. - David Callan, Jul 14 2006
a(n+5) corresponds to the diagonal sums of A030528. The binomial transform of a(n+5) is A052921. a(n+5) = Sum_{k=0..floor(n/2)} Sum_{k=0..n} (-1)^(n-k+i)*binomial(n-k, i)binomial(i+k+1, 2k+1). - Paul Barry, Jun 21 2004
r^(n-1) = (1/r)*a(n) + r*a(n+1) + a(n+2), where r = 1.32471... is the real root of x^3 - x - 1 = 0. Example: r^8 = (1/r)*a(9) + r*a(10) + a(11) = (1/r)*2 + r*3 + 4 = 9.483909... - Gary W. Adamson, Oct 22 2006
a(n) = (r^n)/(2r+3) + (s^n)/(2s+3) + (t^n)/(2t+3) where r, s, t are the three roots of x^3-x-1. - Keith Schneider (schneidk(AT)email.unc.edu), Sep 07 2007
a(n) = -k*a(n-1) + a(n-2) + (k+1)a(n-2) + k*a(n-4), n > 3, for any value of k. - Gary Detlefs, Sep 13 2010
From Francesco Daddi, Aug 04 2011: (Start)
a(0) + a(2) + a(4) + a(6) + ... + a(2*n) = a(2*n+3).
a(0) + a(3) + a(6) + a(9) + ... + a(3*n) = a(3*n+2)+1.
a(0) + a(5) + a(10) + a(15) + ... + a(5*n) = a(5*n+1)+1.
a(0) + a(7) + a(14) + a(21) + ... + a(7*n) = (a(7*n) + a(7*n+1) + 1)/2. (End)
a(n+3) = Sum_{k=0..floor((n+1)/2)} binomial((n+k)/3,k), where binomial((n+k)/3,k)=0 for noninteger (n+k)/3. - Nikita Gogin, Dec 07 2012
a(n) = A182097(n-3) for n > 2. - Jonathan Sondow, Mar 14 2014
a(n) = the k-th difference of a(n+5k) - a(n+5k-1), k>=1. For example, a(10)=3 => a(15)-a(14) => 2nd difference of a(20)-a(19) => 3rd difference of a(25)-a(24)... - Bob Selcoe, Mar 18 2014
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A=(0,0,1,0,1,0,1,...) and S=(0,1,0,0,...) or A063524. [* is convolution operation] Define S^*0=I with I=(1,0,0,...). Then a(n) = Sum_{j=1...n} T(n,j). - David Neil McGrath, Dec 19 2014
If x=a(n), y=a(n+1), z=a(n+2), then x^3 + 2*y*x^2 - z^2*x - 3*y*z*x + y^2*x + y^3 - y^2*z + z^3 = 1. - Alexander Samokrutov, Jul 20 2015
For the sequence shifted by 6 terms, a(n) = Sum_{k=ceiling(n/3)..ceiling(n/2)} binomial(k+1,3*k-n) [Doslic-Zubac]. - N. J. A. Sloane, Apr 23 2017
From Joseph M. Shunia, Jan 21 2020: (Start)
a(2n) = 2*a(n-1)*a(n) + a(n)^2 + a(n+1)^2, for n > 8.
a(2n-1) = 2*a(n)*a(n+1) + a(n-1)^2, for n > 8.
a(2n+1) = 2*a(n+1)*a(n+2) + a(n)^2, for n > 7. (End)
0*a(0) + 1*a(1) + 2*a(2) + ... + n*a(n) = n*a(n+5) - a(n+9) + 2. - Greg Dresden and Zi Ye, Jul 02 2021
From Greg Dresden and Zi Ye, Jul 06 2021: (Start)
2*a(n) = a(n+2) + a(n-5) for n >= 5.
3*a(n) = a(n+4) - a(n-9) for n >= 9.
4*a(n) = a(n+5) - a(n-9) for n >= 9. (End)

Extensions

Edited by Charles R Greathouse IV, Mar 17 2010
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A095263 a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n).

Original entry on oeis.org

1, 3, 7, 16, 37, 86, 200, 465, 1081, 2513, 5842, 13581, 31572, 73396, 170625, 396655, 922111, 2143648, 4983377, 11584946, 26931732, 62608681, 145547525, 338356945, 786584466, 1828587033, 4250949112, 9882257736, 22973462017, 53406819691
Offset: 1

Views

Author

Gary W. Adamson, May 31 2004

Keywords

Comments

a(n+1) = number of n-tuples over {0,1,2} without consecutive digits. For the general case see A096261.
Diagonal sums of Riordan array (1/(1-x)^3, x/(1-x^3)), A127893. - Paul Barry, Jan 07 2008
The signed variant (-1)^(n+1)*a(n+1) is the bottom right entry of the n-th power of the matrix [[0,1,0],[0,0,1],[-1,-2,-3]]. - Roger L. Bagula, Jul 01 2007
a(n) is the number of generalized compositions of n+1 when there are i^2/2-i/2 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010
Dedrickson (Section 4.1) gives a bijection between colored compositions of n, where each part k has one of binomial(k,2) colors, and 0,1,2 strings of length n-2 without sequential digits (i.e., avoiding 01 and 12). Cf. A052529. - Peter Bala, Sep 17 2013
Except for the initial 0, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S^2 - S^3; see A291000. - Clark Kimberling, Aug 24 2017
For n>1, a(n-1) is the number of ways to split [n] into an unspecified number of intervals and then choose 2 blocks (i.e., subintervals) from each interval. For example, for n=6, a(5)=37 since the number of ways to split [6] into intervals and then select 2 blocks from each interval is C(6,2) + C(4,2)*C(2,2) + C(3,2)*C(3,2) + C(2,2)*C(4,2) + C(2,2)*C(2,2)*C(2,2). - Enrique Navarrete, May 20 2022

Examples

			a(9) = 1081 = 3*465 - 2*200 + 86.
M^9 * [1 0 0] = [a(7) a(8) a(9)] = [200 465 1081].
G.f. = x + 3*x^2 + 7*x^3 + 16*x^4 + 37*x^5 + 86*x^6 + 200*x^7 + ...
		

Crossrefs

Cf. A052921 (first differences), A137229 (partial sums).
Column k=3 of A277666.

Programs

  • Magma
    I:=[1,3,7]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 12 2021
    
  • Maple
    A:= gfun:-rectoproc({a(n+3)=3*a(n+2)-2*a(n+1)+a(n),a(1)=1,a(2)=3,a(3)=7},a(n),remember):
    seq(A(n),n=1..100); # Robert Israel, Sep 15 2014
  • Mathematica
    a[1]=1; a[2]=3; a[3]=7; a[n_]:= a[n]= 3a[n-1] -2a[n-2] +a[n-3]; Table[a[n], {n, 22}] (* Or *)
    a[n_]:= (MatrixPower[{{0,1,2,3}, {1,2,3,0}, {2,3,0,1}, {3,0,1,2}}, n].{{1}, {0}, {0}, {0}})[[2, 1]]; Table[ a[n], {n, 22}] (* Robert G. Wilson v, Jun 16 2004 *)
    RecurrenceTable[{a[1]==1,a[2]==3,a[3]==7,a[n+3]==3a[n+2]-2a[n+1]+a[n]},a,{n,30}] (* Harvey P. Dale, Sep 17 2022 *)
  • Sage
    [sum( binomial(n+k+1,3*k+2) for k in (0..(n-1)//2)) for n in (1..30)] # G. C. Greubel, Apr 12 2021

Formula

Let M = the 3 X 3 matrix [0 1 0 / 0 0 1 / 1 -2 3]; then M^n *[1 0 0] = [a(n-2) a(n-1) a(n)].
a(n)/a(n-1) tends to 2.3247179572..., an eigenvalue of M and a root of the characteristic polynomial. [Is that constant equal to 1 + A060006? - Michel Marcus, Oct 11 2014] [Yes, the limit is the root of the equation -1 + 2*x - 3*x^2 + x^3 = 0, after substitution x = y + 1 we have the equation for y: -1 - y + y^3 = 0, y = A060006. - Vaclav Kotesovec, Jan 27 2015]
Related to the Padovan sequence A000931 as follows : a(n)=A000931(3n+4). Also the binomial transform of A000931(n+4).
From Paul Barry, Jul 06 2004: (Start)
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, n-2*k+1).
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, 3*k-1). (End)
From Paul Barry, Jan 07 2008: (Start)
G.f.: x/(1 -3*x +2*x^2 -x^3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k+2,3*k+2).
a(n) = Sum_{k=0..n} binomial(n,k) * Sum_{j=0..floor((k+4)/2)} binomial(j,k-2j+4). (End)
If p[i]=i(i-1)/2 and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=2, a(n-1)=det A. - Milan Janjic, May 02 2010
a(n) = A000931(3*n + 4). - Michael Somos, Sep 18 2012

Extensions

Edited by Paul Barry, Jul 06 2004
Corrected and extended by Robert G. Wilson v, Jun 05 2004

A034943 Binomial transform of Padovan sequence A000931.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, 128801, 299426, 696081, 1618192, 3761840, 8745217, 20330163, 47261895, 109870576, 255418101, 593775046, 1380359512, 3208946545
Offset: 0

Views

Author

Keywords

Comments

Trisection of the Padovan sequence: a(n) = A000931(3n). - Paul Barry, Jul 06 2004
a(n+1) gives diagonal sums of Riordan array (1/(1-x),x/(1-x)^3). - Paul Barry, Oct 11 2005
a(n+2) is the sum, over all Boolean n-strings, of the product of the lengths of the runs of 1. For example, the Boolean 7-string (0,1,1,0,1,1,1) has two runs of 1s. Their lengths, 2 and 3, contribute a product of 6 to a(9). The 8 Boolean 3-strings contribute to a(5) as follows: 000 (empty product), 001, 010, 100, 101 all contribute 1, 011 and 110 contribute 2, 111 contributes 3. - David Callan, Nov 29 2007
[a(n), a(n+1), a(n+2)], n > 0, = [0,1,0; 0,0,1; 1,-2,3]^n * [1,1,1]. - Gary W. Adamson, Mar 27 2008
Without the initial 1 and 1: 1, 2, 5, 12, 28, this is also the transform of 1 by the T_{1,0} transformation; see Choulet link. - Richard Choulet, Apr 11 2009
Without the first 1: transform of 1 by T_{0,0} transformation (see Choulet link). - Richard Choulet, Apr 11 2009
Starting (1, 2, 5, 12, ...) = INVERT transform of (1, 1, 2, 3, 4, 5, ...) and row sums of triangle A159974. - Gary W. Adamson, Apr 28 2009
a(n+1) is also the number of 321-avoiding separable permutations. (A permutation is separable if it avoids both 2413 and 3142.) - Vince Vatter, Sep 21 2009
a(n+1) is an eigensequence of the sequence array for (1,1,2,3,4,5,...). - Paul Barry, Nov 03 2010
Equals the INVERTi transform of A055588: (1, 2, 4, 9, 22, 56, ...) - Gary W. Adamson, Apr 01 2011
The Ca3 sums, see A180662, of triangle A194005 equal the terms of this sequence without a(0) and a(1). - Johannes W. Meijer, Aug 16 2011
Without the initial 1, a(n) = row sums of A182097(n)*A007318(n,k); i.e., a Triangular array T(n,k) multiplying the binomial (Pascal's) triangle by the Padovan sequence where a(0) = 1, a(1) = 0 and a(2) = 1. - Bob Selcoe, Jun 28 2013
a(n+1) is the top left entry of the n-th power of any of the 3 X 3 matrices [1, 1, 1; 0, 1, 1; 1, 0, 1] or [1, 1, 0; 1, 1, 1; 1, 0, 1] or [1, 1, 1; 1, 1, 0; 0, 1, 1] or [1, 0, 1; 1, 1, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 0, 1; 1, 1, 1; 0, 1, 1] or of the 3 X 3 matrix [1, 1, 0; 0, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
Number of sequences (e(1), ..., e(n-1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) < e(k) and e(i) <= e(k). [Martinez and Savage, 2.8] - Eric M. Schmidt, Jul 17 2017
a(n+1) is the number of words of length n over the alphabet {0,1,2} that do not contain the substrings 01 or 12 and do not start with a 2 and do not end with a 0. - Yiseth K. Rodríguez C., Sep 11 2020

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 28*x^6 + 65*x^7 + 151*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else 3*Self(n-1)-2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
    
  • Maple
    A034943 := proc(n): add(binomial(n+k-1, 3*k), k=0..floor(n/2)) end: seq(A034943(n), n=0..28); # Johannes W. Meijer, Aug 16 2011
  • Mathematica
    LinearRecurrence[{3,-2,1},{1,1,1},30] (* Harvey P. Dale, Aug 11 2017 *)
  • PARI
    {a(n) = if( n<1, n = 0-n; polcoeff( (1 - x + x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n), n = n-1; polcoeff( (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, Mar 31 2012 */
    
  • SageMath
    @CachedFunction
    def a(n): # a = A034943
        if (n<3): return 1
        else: return 3*a(n-1) - 2*a(n-2) + a(n-3)
    [a(n) for n in range(51)] # G. C. Greubel, Apr 22 2023

Formula

a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1, 3*k). - Paul Barry, Jul 06 2004
G.f.: (1 - 2*x)/(1 - 3*x + 2*x^2 - x^3). - Paul Barry, Jul 06 2005
G.f.: 1 + x / (1 - x / (1 - x / (1 - x / (1 + x / (1 - x))))). - Michael Somos, Mar 31 2012
a(-1 - n) = A185963(n). - Michael Somos, Mar 31 2012
a(n) = A095263(n) - 2*A095263(n-1). - G. C. Greubel, Apr 22 2023

Extensions

Edited by Charles R Greathouse IV, Apr 20 2010

A124819 Number triangle T(n,k)=C(n+2k+1,3k+1).

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 15, 8, 1, 5, 35, 36, 11, 1, 6, 70, 120, 66, 14, 1, 7, 126, 330, 286, 105, 17, 1, 8, 210, 792, 1001, 560, 153, 20, 1, 9, 330, 1716, 3003, 2380, 969, 210, 23, 1, 10, 495, 3432, 8008, 8568, 4845, 1540, 276
Offset: 0

Views

Author

Paul Barry, Nov 08 2006

Keywords

Comments

Row sums are A124820. Diagonal sums are A052921. Inverse is A124821.

Examples

			Triangle begins
1,
2, 1,
3, 5, 1,
4, 15, 8, 1,
5, 35, 36, 11, 1,
6, 70, 120, 66, 14, 1,
7, 126, 330, 286, 105, 17, 1,
8, 210, 792, 1001, 560, 153, 20, 1
		

Formula

Riordan array (1/(1-x)^2,x/(1-x)^3)

A375224 Expansion of e.g.f. exp( x^2/(1-x)^3 ) / (1-x)^2.

Original entry on oeis.org

1, 2, 8, 54, 492, 5400, 68520, 987000, 15928080, 284588640, 5570994240, 118432147680, 2714315123520, 66662973336960, 1745585471710080, 48522632817859200, 1426443527673964800, 44200671544495065600, 1439417651948346470400, 49134301244829555955200
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x^2/(1-x)^3)/(1-x)^2))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(n+1+k, n-2*k)/k!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n+1+k,n-2*k)/k!.

A233581 a(n) = 2*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 1, a(1) = 0, a(2) = -1.

Original entry on oeis.org

1, 0, -1, -1, 1, 4, 4, -3, -14, -15, 9, 49, 56, -26, -171, -208, 71, 595, 769, -176, -2064, -2831, 354, 7137, 10381, -295, -24596, -37926, -2359, 84464, 138079, 20407, -288959, -501060, -114836, 984549, 1812546, 556609, -3339871, -6537023, -2497824, 11275550
Offset: 0

Views

Author

Michael Somos, Dec 14 2013

Keywords

Examples

			G.f. = 1 - x^2 - x^3 + x^4 + 4*x^5 + 4*x^6 - 3*x^7 - 14*x^8 - 15*x^9 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x+2*x^2)/(1-2*x+3*x^2-x^3))); // G. C. Greubel, Aug 08 2018
  • Mathematica
    CoefficientList[Series[(1-2*x+2*x^2)/(1-2*x+3*x^2-x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{2,-3,1}, {1,0,-1}, 50] (* G. C. Greubel, Aug 08 2018 *)
  • PARI
    {a(n) = if( n<0, polcoeff( (1 - x) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( (1 - 2*x + 2*x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n))}
    

Formula

G.f.: (1 - 2*x + 2*x^2) / (1 - 2*x + 3*x^2 - x^3).
a(n) = A052921(-n). a(n)^2 - a(n-1)*a(n+1) = A034943(n).
a(n) = A127896(n) -2*A127896(n-1) + 2*A127896(n-2). - R. J. Mathar, Sep 24 2021

A089899 Square array, read by antidiagonals, where the n-th row is the binomial transform of (1+x+x^2)^n, starting with n=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 7, 1, 1, 5, 13, 18, 11, 1, 1, 6, 19, 35, 36, 16, 1, 1, 7, 26, 59, 83, 66, 22, 1, 1, 8, 34, 91, 160, 179, 113, 29, 1, 1, 9, 43, 132, 276, 392, 358, 183, 37, 1, 1, 10, 53, 183, 441, 752, 886, 673, 283, 46, 1, 1, 11, 64, 245, 666, 1317, 1882, 1874
Offset: 0

Views

Author

Paul D. Hanna, Nov 13 2003

Keywords

Comments

Main diagonal is A082759, antidiagonal sums give A052921.

Examples

			Row 3 = {1,4,13,35,83,179,...} = BINOMIAL({1,3,6,7,6,3,1}).
Rows begin:
[1,1,1,1,1,1,1,1,..],
[1,2,4,7,11,16,22,29,..],
[1,3,8,18,36,66,113,183,..],
[1,4,13,35,83,179,358,673,..],
[1,5,19,59,160,392,886,1874,..],
[1,6,26,91,276,752,1882,4392,..],
[1,7,34,132,441,1317,3599,9143,..],
[1,8,43,183,666,2157,6371,17446,..],..
		

Crossrefs

Programs

  • PARI
    T(n,k)=local(t); if(n<0 || k<0,0, t=sum(j=0,k,binomial(k,j)*polcoeff((1+x+x^2)^n+x*O(x^j),j)))

A335551 Number of words of length n over the alphabet {0,1,2} that contain the substring 12 but not the substring 01.

Original entry on oeis.org

0, 0, 1, 5, 18, 58, 177, 522, 1503, 4252, 11869, 32787, 89821, 244415, 661415, 1781654, 4780776, 12786704, 34104792, 90749209, 240982564, 638800052, 1690764378, 4469170031, 11799684559, 31122693066, 82016622160, 215969175981, 568313267862, 1494601936229
Offset: 0

Views

Author

Mauricio J. Santos, Sep 15 2020

Keywords

Examples

			a(0) = a(1) = 0, because no word of length n < 2 can contain 12.
a(2) = 1, because there is one word of length 2 and it is 12.
a(3) = 5, because there are 5 words of length 3 and they are 121, 112, 212, 122, 120.
		

Crossrefs

Formula

a(n) = Sum_{i=1..n} A001906(n-i) * A052921(i-1).
G.f.: x^2*(x-1)/((x^2-3*x+1)*(x^3-2*x^2+3*x-1)). - Alois P. Heinz, Sep 15 2020

Extensions

a(20)-a(29) from Alois P. Heinz, Sep 15 2020

A375169 Expansion of (1 - x) / ((1 - x)^3 - x^4).

Original entry on oeis.org

1, 2, 3, 4, 6, 11, 22, 43, 80, 144, 257, 462, 839, 1532, 2798, 5099, 9274, 16855, 30640, 55728, 101393, 184490, 335659, 610628, 1110790, 2020635, 3675822, 6686979, 12164896, 22130208, 40258737, 73237462, 133231279, 242370396, 440913550, 802098203, 1459155634
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec((1-x)/((1-x)^3-x^4))

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4).
a(n) = Sum_{k=0..floor(n/4)} binomial(n+1-k,n-4*k).
a(n) = (n + 1)*hypergeom([(1-n)/4, (2-n)/4, (3-n)/4, -n/4], [2/3, 4/3, -1-n], -4^4/3^3). - Stefano Spezia, Jun 18 2025
Showing 1-10 of 10 results.