A116585
An interleaving of three sequences: a(3n) = A000045(3n) = A014445(n). a(3n+1) = A000931(3n+5) = A052921(n). a(3n+2) = A003269(3n-1).
Original entry on oeis.org
0, 1, 1, 2, 2, 2, 8, 4, 5, 34, 9, 14, 144, 21, 36, 610, 49, 95, 2584, 114, 250, 10946, 265, 657, 46368, 616, 1728, 196418, 1432, 4544, 832040, 3329, 11949, 3524578, 7739, 31422, 14930352, 17991, 82629, 63245986, 41824, 217286, 267914296, 97229, 571388, 1134903170
Offset: 0
- Eric Weisstein's World of Mathematics, Pisot Number.
- Index entries for linear recurrences with constant coefficients, signature (0,0,8,0,0,-17,0,0,1,0,0,11,0,0,15,0,0,2,0,0,3,0,0,5,0,0,1).
-
a[1, 0] = 0; a[1, 1] = 1; a[1, n_Integer?Positive] := a[1, n] = a[1, n - 1] + a[1, n - 2] a[2, 0] = 0; a[2, 1] = 1; a[2, 2] = 1; a[2, n_Integer?Positive] := a[2, n] = a[2, n - 2] + a[2, n - 3] a[3, 0] = 0; a[3, 1] = a[3, 2] = a[3, 3] = 1; a[3, n_Integer?Positive] := a[3, n] = a[3, n - 1] + a[3, n - 4] b = Table[a[1 + Mod[n, 3], n], {n, 0, 25}]
A000931
Padovan sequence (or Padovan numbers): a(n) = a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 0.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625
Offset: 0
G.f. = 1 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 4*x^11 + ...
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
- Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, Dawn Nelson, Zhao Pan, and Huanzhong Xu, Legal Decompositions Arising from Non-positive Linear Recurrences, Fib. Quart., 55:3 (2017), 252-275. [Note that there is an earlier version of this paper, with only five authors, on the arXiv in 2016. Note to editors: do not merge these two citations. - N. J. A. Sloane, Dec 24 2021]
- Richard K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 10-11.
- Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
- A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See P_n.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ian Stewart, L'univers des nombres, "La sculpture et les nombres", pp. 19-20, Belin-Pour La Science, Paris, 2000.
- Hans van der Laan, Het plastische getal. XV lessen over de grondslagen van de architectonische ordonnantie. Leiden, E.J. Brill, 1967.
- Don Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics (Paris, 1992), Vol. II, A. Joseph et al. (eds.), Birkhäuser, Basel, 1994, pp. 497-512.
- Indranil Ghosh, Table of n, a(n) for n = 0..8180 (terms 0..1000 from T. D. Noe)
- Kouèssi Norbert Adédji, Japhet Odjoumani, and Alain Togbé, Padovan and Perrin numbers as products of two generalized Lucas numbers, Archivum Mathematicum, Vol. 59 (2023), No. 4, 315-337.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- Andrei Asinowski, Cyril Banderier and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Mohamadou Bachabi and Alain S. Togbé, Products of Fermat or Mersenne numbers in some sequences, Math. Comm. (2024) Vol. 29, 265-285.
- Cristina Ballantine and Mircea Merca, Padovan numbers as sums over partitions into odd parts, Journal of Inequalities and Applications, (2016) 2016:1. doi:10.1186/s13660-015-0952-5.
- Barry Balof, Restricted tilings and bijections, J. Integer Seq., Vol. 15, No. 2 (2012), Article 12.2.3, 17 pp.
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, Vol. 18, No. 1 (2011), #P178.
- Jean-Luc Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol. 17, No. 3 (2016), pp. 13-30. See Table 4.
- Jean-Luc Baril and Jean-Marcel Pallo, A Motzkin filter in the Tamari lattice, Discrete Mathematics, Vol. 338, No. 8 (2015), pp. 1370-1378.
- Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv preprint arXiv:1505.06339 [math.NT], 2015.
- Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear Recurrence Sequences and Their Convolutions via Bell Polynomials, Journal of Integer Sequences, Vol. 18 (2015), #15.1.2.
- Khadidja Boubellouta and Mohamed Kerada, Some Identities and Generating Functions for Padovan Numbers, Tamap Journal of Mathematics and Statistics (2019), Article SI04.
- Olivier Bouillot, The Algebra of Multitangent Functions, arXiv:1404.0992 [math.NT], 2014.
- Johann S. Brauchart, Peter D. Dragnev and Edward B. Saff, An Electrostatics Problem on the Sphere Arising from a Nearby Point Charge, arXiv preprint arXiv:1402.3367 [math-ph], 2014. See Section 2, where the Padovan sequence is represented as a spiral of cubes (see Comments above). - _N. J. A. Sloane_, Mar 26 2014
- Ulrich Brenner, Anna Hermann and Jannik Silvanus, Constructing Depth-Optimum Circuits for Adders and AND-OR Paths, arXiv:2012.05550 [cs.DM], 2020.
- D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett B., Vol. 393, No. 3-4 (1997), pp. 403-412. UTA-PHYS-96-44; arXiv preprint, arXiv:hep-th/9609128, 1996. Table 1 K_n.
- Francis Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [math.NT], 2011.
- Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller and Dawn Nelson, Legal Decompositions Arising from Non-positive Linear Recurrences, arXiv preprint arXiv:1606.09312 [math.CO], 2016. [Note that there is a 2017 paper in the Fib. Quart. with the same title but with seven authors - see References above. -_N. J. A. Sloane_, Dec 24 2021]
- Frédéric Chapoton, Multiple T-values with one parameter, arXiv:2108.08534 [math.NT], 2021. See p. 5.
- Phyllis Chinn and Silvia Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6 (2003), Article 03.2.3.
- Moshe Cohen, The Jones polynomials of 3-bridge knots via Chebyshev knots and billiard table diagrams, arXiv preprint arXiv:1409.6614 [math.GT], 2014.
- Mahadi Ddamulira, On the x-coordinates of Pell equations which are sums of two Padovan numbers, arXiv:1905.11322 [math.NT], 2019.
- Mahadi Ddamulira, Padovan numbers that are concatenations of two repdigits, arXiv:2003.10705 [math.NT], 2020.
- Mahadi Ddamulira, On the x-coordinates of Pell equations that are products of two Padovan numbers, Integers: Electronic Journal of Combinatorial Number Theory, State University of West Georgia, Charles University, and DIMATIA (2020), hal-02471858.
- Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, arXiv:2003.10705 [math.NT], 2020.
- Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, Cambridge Open Engage (2020), preprint.
- Mahadi Ddamulira, On the x-coordinates of Pell Equations that are Products of Two Padovan Numbers, Integers (2020) Vol. 20, #A70.
- Tomislav Doslic and I. Zubac, Counting maximal matchings in linear polymers, Ars Mathematica Contemporanea, Vol. 11 (2016), pp. 255-276.
- James East, Jitender Kumar, James D. Mitchell and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [From _James Mitchell_ and _Wilf A. Wilson_, Jul 21 2017]
- Aysel Erey, Zachary Gershkoff, Amanda Lohss and Ranjan Rohatgi, Characterization and enumeration of 3-regular permutation graphs, arXiv:1709.06979 [math.CO], 2017.
- Reinhardt Euler, The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.6.
- Reinhardt Euler, Paweł Oleksik and Zdzisław Skupien, Counting Maximal Distance-Independent Sets in Grid Graphs, Discussiones Mathematicae Graph Theory, Vol. 33, No. 3 (2013), pp. 531-557, ISSN (Print) 2083-5892.
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications, Vol. 10, No. 3 (2019), pp. 643-651.
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- Philippe Flajolet and Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics, Vol. 7, No. 1 (1998), pp. 15-35.
- Dale Gerdemann, Sums of Padovan numbers equal to sums of powers of plastic number, YouTube video.
- Dale Gerdemann, Tuba Fantasy (music generated from Padovan numbers), YouTube video.
- Juan B. Gil, Michael D. Weiner and Catalin Zara, Complete Padovan sequences in finite fields, arXiv:math/0605348 [math.NT], 2006.
- Juan B. Gil, Michael D. Weiner and Catalin Zara, Complete Padovan sequences in finite fields, The Fibonacci Quarterly, Vol. 45, No. 1 (Feb 2007), pp. 64-75.
- N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Proceedings of Applications of Computer Algebra ACA, 2013.
- Taras Goy, Some families of identities for Padovan numbers, Proc. Jangjeon Math. Soc., Vol. 21, No. 3 (2018), pp. 413-419.
- Taras Goy and Mark Shattuck, Determinant Identities for Toeplitz-Hessenberg Matrices with Tribonacci Number Entries, arXiv:2003.10660 [math.CO], 2020.
- T. M. Green, Recurrent sequences and Pascal's triangle, Math. Mag., Vol. 41, No. 1 (1968), pp. 13-21.
- Tony Grubman and Ian M. Wanless, Growth rate of canonical and minimal group embeddings of spherical latin trades, Journal of Combinatorial Theory, Series A, 2014, 57-72.
- Richard K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
- Rachel Wells Hall, Math for Poets and Drummers, Math Horizons, Vol. 15, No. 3 (2008), pp. 10-24; preprint; Wayback Machine link.
- Michael E. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums, Kyushu Journal of Mathematics, Vol. 69, No. 2 (2015), pp. 345-366.
- Svenja Huntemann and Neil A. McKay, Counting Domineering Positions, arXiv:1909.12419 [math.CO], 2019.
- Aleksandar Ilić, Sandi Klavžar, and Yoomi Rho, Parity index of binary words and powers of prime words, The electronic journal of combinatorics, Vol. 19, No. 3 (2012), #P44. - _N. J. A. Sloane_, Sep 27 2012
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 393.
- Milan Janjic, Recurrence Relations and Determinants, arXiv preprint arXiv:1112.2466 [math.CO], 2011.
- Milan Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.5.
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq., Vol. 21 (2018), Article 18.1.4.
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 90.
- Paul Johnson, Simultaneous cores with restrictions and a question of Zaleski and Zeilberger, arXiv:1802.09621 [math.CO], 2018.
- Virginia Johnson and C. K. Cook, Areas of Triangles and other Polygons with Vertices from Various Sequences, arXiv preprint arXiv:1608.02420 [math.CO], 2016.
- Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart., Vol. 44, No. 4 (2006), pp. 335-340.
- Wolfdieter Lang, Padovan combinatorics, explicit formula, and sequences with various inputs. - _Wolfdieter Lang_, Jun 15 2010
- Ana Cecilia García Lomelí and Santos Hernández Hernández, Repdigits as Sums of Two Padovan Numbers, J. Int. Seq., Vol. 22 (2019), Article 19.2.3.
- J. M. Luck and A. Mehta, Universality in survivor distributions: Characterising the winners of competitive dynamics, arXiv preprint arXiv:1511.04340 [q-bio.QM], 2015.
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, see Table 49.
- Steven J. Miller and Alexandra Newlon, The Fibonacci Quilt Game, arXiv preprint arXiv:1909.01938 [math.NT], 2019. Also Fib. Q., Vol. 58, No. 2 (2020), pp. 157-168. (See Fig. 2, The "Fibonacci Quilt" sequence.)
- Ryan Mullen, On Determining Paint by Numbers Puzzles with Nonunique Solutions, JIS, Vol. 12 (2009), Article 09.6.5.
- Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, Arndt compositions with restricted parts, J. Sci. Lab. RECITS (2024), 71-74.
- Mariana Nagy, Simon R. Cowell and Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
- Wilbert Osmond, Growing Trees in Padovan Sequence For The Enhancement of L-System Algorithm, 2014.
- Richard Padovan, Dom Hans Van Der Laan And The Plastic Number, pp. 181-193 in Nexus IV: Architecture and Mathematics, eds. Kim Williams and Jose Francisco Rodrigues, Fucecchio (Florence): Kim Williams Books, 2002.
- Richard Padovan, Dom Hans van der Laan and the Plastic Number, Chapter 74, pp. 407-419, Volume II of K. Williams and M. J. Ostwald (eds.), Architecture and Mathematics from Antiquity to the Future, DOI 10.1007/978-3-319-00143-2_27, Springer International Publishing Switzerland, 2015.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Narad Rampersad and Max Wiebe, Sums of products of binomial coefficients mod 2 and 2-regular sequences, Integers (2024) Vol. 24, Art. No. A73. See p. 11.
- Salah Eddine Rihane, Chèfiath Awero Adegbindin and Alain Togbé, Fermat Padovan And Perrin Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.2.
- Shingo Saito, Tatsushi Tanaka and Noriko Wakabayashi, Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values, J. Int. Seq., Vol. 14 (2011), Article 11.2.4, Conjecture 2.
- Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
- Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
- Steven J. Tedford, Combinatorial identities for the Padovan numbers, Fib. Q., 57:4 (2019), 291-298.
- Michel Waldschmidt, Lectures on Multiple Zeta Values (IMSC 2011).
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Minimal Edge Cover.
- Eric Weisstein's World of Mathematics, Minimal Vertex Cover.
- Eric Weisstein's World of Mathematics, Padovan Sequence.
- Eric Weisstein's World of Mathematics, Pan Graph.
- Eric Weisstein's World of Mathematics, Path Complement Graph.
- Eric Weisstein's World of Mathematics, Path Graph.
- Erv Wilson, The Scales of Mt. Meru.
- Iwona Włoch, Urszula Bednarz, Dorota Bród, Andrzej Włoch and Małgorzata Wołowiec-Musiał, On a new type of distance Fibonacci numbers, Discrete Applied Math., Vol. 161, No. 16-17 (November 2013) pp. 2695-2701.
- Richard Yanco, Letter and Email to N. J. A. Sloane, 1994.
- Richard Yanco and Ansuman Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
- Diyar O. Mustafa Zangana and Ahmet Öteleş, Padovan Numbers by the Permanents of a Certain Complex Pentadiagonal Matrix, J. of Garmian Univ., Vol. 5, No. 2 (2018), pp. 330-338.
- Sergey Zlobin, A note on arithmetic properties of multiple zeta values, arXiv:math/0601151 [math.NT], 2006.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1).
-
a:=[1,0,0];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # G. C. Greubel, Dec 30 2019
-
a000931 n = a000931_list !! n
a000931_list = 1 : 0 : 0 : zipWith (+) a000931_list (tail a000931_list)
-- Reinhard Zumkeller, Feb 10 2011
-
I:=[1,0,0]; [n le 3 select I[n] else Self(n-2) + Self(n-3): n in [1..60]]; // Vincenzo Librandi, Jul 21 2015
-
A000931 := proc(n) option remember; if n = 0 then 1 elif n <= 2 then 0 else procname(n-2)+procname(n-3); fi; end;
A000931:=-(1+z)/(-1+z^2+z^3); # Simon Plouffe in his 1992 dissertation; gives sequence without five leading terms
a[0]:=1; a[1]:=0; a[2]:=0; for n from 3 to 50 do a[n]:=a[n-2]+a[n-3]; end do; # Francesco Daddi, Aug 04 2011
-
CoefficientList[Series[(1-x^2)/(1-x^2-x^3), {x, 0, 50}], x]
a[0]=1; a[1]=a[2]=0; a[n_]:= a[n]= a[n-2] + a[n-3]; Table[a[n], {n, 0, 50}] (* Robert G. Wilson v, May 04 2006 *)
LinearRecurrence[{0,1,1}, {1,0,0}, 50] (* Harvey P. Dale, Jan 10 2012 *)
Table[RootSum[-1 -# +#^3 &, 5#^n -6#^(n+1) +4#^(n+2) &]/23, {n,0,50}] (* Eric W. Weisstein, Nov 09 2017 *)
-
Vec((1-x^2)/(1-x^2-x^3) + O(x^50)) \\ Charles R Greathouse IV, Feb 11 2011
-
{a(n) = if( n<0, polcoeff(1/(1+x-x^3) + x * O(x^-n), -n), polcoeff( (1 - x^2)/(1-x^2-x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
-
def aupton(nn):
alst = [1, 0, 0]
for n in range(3, nn+1): alst.append(alst[n-2]+alst[n-3])
return alst
print(aupton(49)) # Michael S. Branicky, Mar 28 2022
-
def A000931_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x^2)/(1-x^2-x^3) ).list()
A000931_list(50) # G. C. Greubel, Dec 30 2019
Deleted certain dangerous or potentially dangerous links. -
N. J. A. Sloane, Jan 30 2021
A095263
a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n).
Original entry on oeis.org
1, 3, 7, 16, 37, 86, 200, 465, 1081, 2513, 5842, 13581, 31572, 73396, 170625, 396655, 922111, 2143648, 4983377, 11584946, 26931732, 62608681, 145547525, 338356945, 786584466, 1828587033, 4250949112, 9882257736, 22973462017, 53406819691
Offset: 1
a(9) = 1081 = 3*465 - 2*200 + 86.
M^9 * [1 0 0] = [a(7) a(8) a(9)] = [200 465 1081].
G.f. = x + 3*x^2 + 7*x^3 + 16*x^4 + 37*x^5 + 86*x^6 + 200*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. R. Dedrickson III, Compositions, Bijections, and Enumerations Thesis, Jack N. Averitt College of Graduate Studies, Georgia Southern University, 2012.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
-
I:=[1,3,7]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 12 2021
-
A:= gfun:-rectoproc({a(n+3)=3*a(n+2)-2*a(n+1)+a(n),a(1)=1,a(2)=3,a(3)=7},a(n),remember):
seq(A(n),n=1..100); # Robert Israel, Sep 15 2014
-
a[1]=1; a[2]=3; a[3]=7; a[n_]:= a[n]= 3a[n-1] -2a[n-2] +a[n-3]; Table[a[n], {n, 22}] (* Or *)
a[n_]:= (MatrixPower[{{0,1,2,3}, {1,2,3,0}, {2,3,0,1}, {3,0,1,2}}, n].{{1}, {0}, {0}, {0}})[[2, 1]]; Table[ a[n], {n, 22}] (* Robert G. Wilson v, Jun 16 2004 *)
RecurrenceTable[{a[1]==1,a[2]==3,a[3]==7,a[n+3]==3a[n+2]-2a[n+1]+a[n]},a,{n,30}] (* Harvey P. Dale, Sep 17 2022 *)
-
[sum( binomial(n+k+1,3*k+2) for k in (0..(n-1)//2)) for n in (1..30)] # G. C. Greubel, Apr 12 2021
A034943
Binomial transform of Padovan sequence A000931.
Original entry on oeis.org
1, 1, 1, 2, 5, 12, 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, 128801, 299426, 696081, 1618192, 3761840, 8745217, 20330163, 47261895, 109870576, 255418101, 593775046, 1380359512, 3208946545
Offset: 0
G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 28*x^6 + 65*x^7 + 151*x^8 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Miklos Bona and Rebecca Smith, Pattern avoidance in permutations and their squares, arXiv:1901.00026 [math.CO], 2018. See H(z), Ex. 4.1.
- Richard Choulet, Curtz like Transformation
- Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227. - From _N. J. A. Sloane_, Feb 01 2013
- Stoyan Dimitrov, Sorting by shuffling methods and a queue, arXiv:2103.04332 [math.CO], 2021.
- Phan Thuan Do, Thi Thu Huong Tran, and Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [cs.DM], 2018.
- Brian Hopkins and Hua Wang, Restricted Color n-color Compositions, arXiv:2003.05291 [math.CO], 2020.
- Jia Huang and Erkko Lehtonen, Associative-commutative spectra for some varieties of groupoids, arXiv:2401.15786 [math.CO], 2024. See p. 18.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 904
- H. Magnusson and H. Ulfarsson, Algorithms for discovering and proving theorems about permutation patterns, arXiv preprint arXiv:1211.7110 [math.CO], 2012.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016
- Vincent Vatter, Finding regular insertion encodings for permutation classes, arXiv:0911.2683 [math.CO], 2009.
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
-
[n le 3 select 1 else 3*Self(n-1)-2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
-
A034943 := proc(n): add(binomial(n+k-1, 3*k), k=0..floor(n/2)) end: seq(A034943(n), n=0..28); # Johannes W. Meijer, Aug 16 2011
-
LinearRecurrence[{3,-2,1},{1,1,1},30] (* Harvey P. Dale, Aug 11 2017 *)
-
{a(n) = if( n<1, n = 0-n; polcoeff( (1 - x + x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n), n = n-1; polcoeff( (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, Mar 31 2012 */
-
@CachedFunction
def a(n): # a = A034943
if (n<3): return 1
else: return 3*a(n-1) - 2*a(n-2) + a(n-3)
[a(n) for n in range(51)] # G. C. Greubel, Apr 22 2023
A124819
Number triangle T(n,k)=C(n+2k+1,3k+1).
Original entry on oeis.org
1, 2, 1, 3, 5, 1, 4, 15, 8, 1, 5, 35, 36, 11, 1, 6, 70, 120, 66, 14, 1, 7, 126, 330, 286, 105, 17, 1, 8, 210, 792, 1001, 560, 153, 20, 1, 9, 330, 1716, 3003, 2380, 969, 210, 23, 1, 10, 495, 3432, 8008, 8568, 4845, 1540, 276
Offset: 0
Triangle begins
1,
2, 1,
3, 5, 1,
4, 15, 8, 1,
5, 35, 36, 11, 1,
6, 70, 120, 66, 14, 1,
7, 126, 330, 286, 105, 17, 1,
8, 210, 792, 1001, 560, 153, 20, 1
A375224
Expansion of e.g.f. exp( x^2/(1-x)^3 ) / (1-x)^2.
Original entry on oeis.org
1, 2, 8, 54, 492, 5400, 68520, 987000, 15928080, 284588640, 5570994240, 118432147680, 2714315123520, 66662973336960, 1745585471710080, 48522632817859200, 1426443527673964800, 44200671544495065600, 1439417651948346470400, 49134301244829555955200
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x^2/(1-x)^3)/(1-x)^2))
-
a(n) = n!*sum(k=0, n\2, binomial(n+1+k, n-2*k)/k!);
A233581
a(n) = 2*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 1, a(1) = 0, a(2) = -1.
Original entry on oeis.org
1, 0, -1, -1, 1, 4, 4, -3, -14, -15, 9, 49, 56, -26, -171, -208, 71, 595, 769, -176, -2064, -2831, 354, 7137, 10381, -295, -24596, -37926, -2359, 84464, 138079, 20407, -288959, -501060, -114836, 984549, 1812546, 556609, -3339871, -6537023, -2497824, 11275550
Offset: 0
G.f. = 1 - x^2 - x^3 + x^4 + 4*x^5 + 4*x^6 - 3*x^7 - 14*x^8 - 15*x^9 + ...
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x+2*x^2)/(1-2*x+3*x^2-x^3))); // G. C. Greubel, Aug 08 2018
-
CoefficientList[Series[(1-2*x+2*x^2)/(1-2*x+3*x^2-x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{2,-3,1}, {1,0,-1}, 50] (* G. C. Greubel, Aug 08 2018 *)
-
{a(n) = if( n<0, polcoeff( (1 - x) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( (1 - 2*x + 2*x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n))}
A089899
Square array, read by antidiagonals, where the n-th row is the binomial transform of (1+x+x^2)^n, starting with n=0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 7, 1, 1, 5, 13, 18, 11, 1, 1, 6, 19, 35, 36, 16, 1, 1, 7, 26, 59, 83, 66, 22, 1, 1, 8, 34, 91, 160, 179, 113, 29, 1, 1, 9, 43, 132, 276, 392, 358, 183, 37, 1, 1, 10, 53, 183, 441, 752, 886, 673, 283, 46, 1, 1, 11, 64, 245, 666, 1317, 1882, 1874
Offset: 0
Row 3 = {1,4,13,35,83,179,...} = BINOMIAL({1,3,6,7,6,3,1}).
Rows begin:
[1,1,1,1,1,1,1,1,..],
[1,2,4,7,11,16,22,29,..],
[1,3,8,18,36,66,113,183,..],
[1,4,13,35,83,179,358,673,..],
[1,5,19,59,160,392,886,1874,..],
[1,6,26,91,276,752,1882,4392,..],
[1,7,34,132,441,1317,3599,9143,..],
[1,8,43,183,666,2157,6371,17446,..],..
-
T(n,k)=local(t); if(n<0 || k<0,0, t=sum(j=0,k,binomial(k,j)*polcoeff((1+x+x^2)^n+x*O(x^j),j)))
A335551
Number of words of length n over the alphabet {0,1,2} that contain the substring 12 but not the substring 01.
Original entry on oeis.org
0, 0, 1, 5, 18, 58, 177, 522, 1503, 4252, 11869, 32787, 89821, 244415, 661415, 1781654, 4780776, 12786704, 34104792, 90749209, 240982564, 638800052, 1690764378, 4469170031, 11799684559, 31122693066, 82016622160, 215969175981, 568313267862, 1494601936229
Offset: 0
a(0) = a(1) = 0, because no word of length n < 2 can contain 12.
a(2) = 1, because there is one word of length 2 and it is 12.
a(3) = 5, because there are 5 words of length 3 and they are 121, 112, 212, 122, 120.
A375169
Expansion of (1 - x) / ((1 - x)^3 - x^4).
Original entry on oeis.org
1, 2, 3, 4, 6, 11, 22, 43, 80, 144, 257, 462, 839, 1532, 2798, 5099, 9274, 16855, 30640, 55728, 101393, 184490, 335659, 610628, 1110790, 2020635, 3675822, 6686979, 12164896, 22130208, 40258737, 73237462, 133231279, 242370396, 440913550, 802098203, 1459155634
Offset: 0
Showing 1-10 of 10 results.
Comments