A034943
Binomial transform of Padovan sequence A000931.
Original entry on oeis.org
1, 1, 1, 2, 5, 12, 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, 128801, 299426, 696081, 1618192, 3761840, 8745217, 20330163, 47261895, 109870576, 255418101, 593775046, 1380359512, 3208946545
Offset: 0
G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 28*x^6 + 65*x^7 + 151*x^8 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Miklos Bona and Rebecca Smith, Pattern avoidance in permutations and their squares, arXiv:1901.00026 [math.CO], 2018. See H(z), Ex. 4.1.
- Richard Choulet, Curtz like Transformation
- Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227. - From _N. J. A. Sloane_, Feb 01 2013
- Stoyan Dimitrov, Sorting by shuffling methods and a queue, arXiv:2103.04332 [math.CO], 2021.
- Phan Thuan Do, Thi Thu Huong Tran, and Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [cs.DM], 2018.
- Brian Hopkins and Hua Wang, Restricted Color n-color Compositions, arXiv:2003.05291 [math.CO], 2020.
- Jia Huang and Erkko Lehtonen, Associative-commutative spectra for some varieties of groupoids, arXiv:2401.15786 [math.CO], 2024. See p. 18.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 904
- H. Magnusson and H. Ulfarsson, Algorithms for discovering and proving theorems about permutation patterns, arXiv preprint arXiv:1211.7110 [math.CO], 2012.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016
- Vincent Vatter, Finding regular insertion encodings for permutation classes, arXiv:0911.2683 [math.CO], 2009.
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
-
[n le 3 select 1 else 3*Self(n-1)-2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
-
A034943 := proc(n): add(binomial(n+k-1, 3*k), k=0..floor(n/2)) end: seq(A034943(n), n=0..28); # Johannes W. Meijer, Aug 16 2011
-
LinearRecurrence[{3,-2,1},{1,1,1},30] (* Harvey P. Dale, Aug 11 2017 *)
-
{a(n) = if( n<1, n = 0-n; polcoeff( (1 - x + x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n), n = n-1; polcoeff( (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, Mar 31 2012 */
-
@CachedFunction
def a(n): # a = A034943
if (n<3): return 1
else: return 3*a(n-1) - 2*a(n-2) + a(n-3)
[a(n) for n in range(51)] # G. C. Greubel, Apr 22 2023
A133034
First differences of Padovan sequence A000931.
Original entry on oeis.org
-1, 0, 1, -1, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396
Offset: 0
-
LinearRecurrence[{0,1,1},{-1,0,1},60] (* Harvey P. Dale, Dec 14 2013 *)
A012781
Take every 5th term of Padovan sequence A000931, beginning with the second term.
Original entry on oeis.org
0, 1, 4, 16, 65, 265, 1081, 4410, 17991, 73396, 299426, 1221537, 4983377, 20330163, 82938844, 338356945, 1380359512, 5631308624, 22973462017, 93722435101, 382349636061, 1559831901918, 6363483400447, 25960439030624
Offset: 0
- R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Index entries for linear recurrences with constant coefficients, signature (5,-4,1).
-
I:=[0, 1, 4 ]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 03 2012
-
LinearRecurrence[{5, -4, 1}, {0, 1, 4}, 25] (* Harvey P. Dale, Jan 10 2012 *)
-
def a(n, adict={0:0, 1:1, 2:4}):
if n in adict:
return adict[n]
adict[n]=5*a(n-1) - 4*a(n-2) + a(n-3)
return adict[n] # David Nacin, Feb 27 2012
A012814
Take every 5th term of Padovan sequence A000931, beginning with the third term.
Original entry on oeis.org
0, 1, 5, 21, 86, 351, 1432, 5842, 23833, 97229, 396655, 1618192, 6601569, 26931732, 109870576, 448227521, 1828587033, 7459895657, 30433357674, 124155792775, 506505428836, 2066337330754, 8429820731201, 34390259761825, 140298353215075, 572360547759276, 2334999585697905
Offset: 0
G.f. = x + 5*x^2 + 21*x^3 + 86*x^4 + 351*x^5 + 1432*x^6 + 5842*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Ulrich Brenner, Anna Hermann, and Jannik Silvanus, Constructing Depth-Optimum Circuits for Adders and AND-OR Paths, arXiv:2012.05550 [cs.DM], 2020.
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 7.
- Taras Goy and Mark Shattuck, Toeplitz-Hessenberg determinant formulas for the sequence F_n-1, Online J. Anal. Comb. 19 (2024), no. 19, Paper #1, 27 pp. See Theorem 3.1.
- Index entries for linear recurrences with constant coefficients, signature (5,-4,1).
-
I:=[0, 1, 5 ]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 03 2012
-
LinearRecurrence[{5, -4, 1}, {0, 1, 5}, 25] (* Vincenzo Librandi, Feb 03 2012 *)
A139038
Triangle read by rows: T(n,m) = A000931(m+6) if m <= floor(n/2), A000931(n+6-m) otherwise, for 0 <= m <= n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 4, 3, 2, 2, 1
Offset: 0
The triangle begins:
1;
1, 1;
1, 1, 1;,
1, 1, 1, 1;
1, 1, 2, 1, 1;
1, 1, 2, 2, 1, 1;
1, 1, 2, 2, 2, 1, 1;
1, 1, 2, 2, 2, 2, 1, 1;
1, 1, 2, 2, 3, 2, 2, 1, 1;
1, 1, 2, 2, 3, 3, 2, 2, 1, 1;
1, 1, 2, 2, 3, 4, 3, 2, 2, 1, 1;
...
-
a[-1] = 1; a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; (* Padovan : A000931 *)
Table[If[m <= Floor[n/2], a[m], a[n - m]], {n, 0, 10}, {m, 0, n}]
Definition corrected and offset changed by
Georg Fischer, May 16 2024
A144400
Triangle read by rows: row n (n > 0) gives the coefficients of x^k (0 <= k <= n - 1) in the expansion of Sum_{j=0..n} A000931(j+4)*binomial(n, j)*x^(j - 1)*(1 - x)^(n - j).
Original entry on oeis.org
1, 2, -1, 3, -3, 1, 4, -6, 4, 0, 5, -10, 10, 0, -3, 6, -15, 20, 0, -18, 10, 7, -21, 35, 0, -63, 70, -24, 8, -28, 56, 0, -168, 280, -192, 49, 9, -36, 84, 0, -378, 840, -864, 441, -89, 10, -45, 120, 0, -756, 2100, -2880, 2205, -890, 145, 11, -55, 165, 0
Offset: 1
Triangle begins:
1;
2, -1;
3, -3, 1;
4, -6, 4, 0;
5, -10, 10, 0, -3;
6, -15, 20, 0, -18, 10;
7, -21, 35, 0, -63, 70, -24;
8, -28, 56, 0, -168, 280, -192, 49;
9, -36, 84, 0, -378, 840, -864, 441, -89;
10, -45, 120, 0, -756, 2100, -2880, 2205, -890, 145;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 22 2018
Cf.
A122753,
A123018,
A123019,
A123021,
A123027,
A123199,
A123202,
A123217,
A123221,
A141720,
A144387,
A174128.
-
a[n_]:= a[n]= If[n<3, Fibonacci[n], a[n-2] + a[n-3]];
p[x_, n_]:= Sum[a[k]*Binomial[n, k]*x^(k-1)*(1-x)^(n-k), {k, 0, n}];
Table[Coefficient[p[x, n], x, k], {n, 12}, {k, 0, n-1}]//Flatten
-
@CachedFunction
def f(n): return fibonacci(n) if (n<3) else f(n-2) + f(n-3)
def p(n,x): return sum( binomial(n,j)*f(j)*x^(j-1)*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
[T(n) for n in (1..12)] # G. C. Greubel, Jul 14 2021
A100538
Volume of the 3-dimensional box of sides of length equal to consecutive Padovan numbers (A000931). These boxes form a spiral in three dimensions similar to the spiral of Fibonacci boxes in two dimensions.
Original entry on oeis.org
1, 2, 4, 12, 24, 60, 140, 315, 756, 1728, 4032, 9408, 21756, 50764, 117845, 273910, 637260, 1480404, 3442800, 8003000, 18603000, 43251975, 100540440, 233735040, 543371136, 1263161472, 2936540824, 6826574552, 15869878969, 36893076570
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- I. Stewart, Tales of a Neglected Number
- Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
- Index entries for linear recurrences with constant coefficients, signature (1,2,3,-2,4,-4,-1,-1,0,-1).
-
LinearRecurrence[{1, 2, 3, -2, 4, -4, -1, -1, 0, -1}, {1, 2, 4, 12, 24, 60, 140, 315, 756, 1728}, 50] (* Vincenzo Librandi, Apr 24 2017 *)
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 1, 1, 4, 4, 9, 16, 25, 49, 81, 144, 256, 441, 784, 1369, 2401, 4225, 7396, 12996, 22801, 40000, 70225, 123201, 216225, 379456, 665856, 1168561, 2050624, 3598609, 6315169, 11082241, 19448100, 34128964, 59892121, 105103504, 184443561, 323676081
Offset: 0
a(10)=9 because Padovan(10)=3 and 3^2=9.
-
a[0] = a[3] = a[5] = a[6] = 1; a[1] = a[2] = a[4] = 0; a[n_Integer] := a[n] = 2*a[n - 2] + 2*a[n - 3] - a[n - 7]; Table[a[i], {i, 0, 40}] (* Olivier Gérard, Jul 05 2011 *)
Table[RootSum[-1 - # + #^3 &, #^n (5 - 6 # + 4 #^2) &]^2/529, {n, 0,
40}] (* Eric W. Weisstein, Apr 16 2018 *)
LinearRecurrence[{1, 1, 1, -1, 1, -1}, {1, 0, 0, 1, 0, 1}, 40] (* Eric W. Weisstein, Apr 16 2018 *)
-
Vec(O(x^20)+(1-x-x^2-x^5)/(1-x-x^2-x^3+x^4-x^5+x^6)) \\ Charles R Greathouse IV, Jul 05 2011
A134732
Concatenation of first n members of the Padovan sequence A000931, starting at (1, 1, 1, 2,).
Original entry on oeis.org
1, 11, 111, 1112, 11122, 111223, 1112234, 11122345, 111223457, 1112234579, 111223457912, 11122345791216, 1112234579121621, 111223457912162128, 11122345791216212837, 1112234579121621283749, 111223457912162128374965
Offset: 1
-
Module[{nn=20,padseq},padseq=LinearRecurrence[{0,1,1},{1,1,1,2},nn];Table[ FromDigits[ Flatten[IntegerDigits/@Take[padseq,n]]],{n,nn}]] (* Harvey P. Dale, Feb 18 2023 *)
A329227
Products of consecutive terms of the Padovan sequence A000931.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 2, 4, 6, 12, 20, 35, 63, 108, 192, 336, 588, 1036, 1813, 3185, 5590, 9804, 17214, 30200, 53000, 93015, 163215, 286440, 502656, 882096, 1547992, 2716504, 4767161, 8365777, 14680890, 25763220, 45211238, 79340228, 139232412, 244335771
Offset: 0
For n=5, a(5) = A000931(5)*A000931(6) = 1*1.
-
Times@@@Partition[LinearRecurrence[{0,1,1},{1,0,0},50],2,1] (* Harvey P. Dale, Jul 05 2021 *)
-
p = lambda x:[1,0,0][x] if x<3 else p(x-2)+p(x-3)
a = lambda x:p(x)*p(x+1)
Showing 1-10 of 241 results.
Comments