A206948
Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level above 0.
Original entry on oeis.org
0, 0, 0, 2, 19, 131, 791, 4446, 23913, 124892, 638878, 3218559, 16027375, 79093773, 387540260, 1887974063, 9154751912, 44221373872, 212931964415, 1022594028515, 4900116587043, 23437066655010, 111923110602497
Offset: 0
- R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (11, -40, 55, -30, 6).
Cf.
A206947 (unique maximal element added).
Cf.
A206949,
A206950 (allowing one or two elements in each rank level above 0 with and without maximal element).
-
LinearRecurrence[{11, -40, 55, -30, 6}, {0, 0, 0, 2, 19, 131}, 23] (* David Nacin, Feb 29 2012; a(0) added by Georg Fischer, Apr 03 2019 *)
-
def a(n, adict={0:0, 1:0, 2:0, 3:2, 4:19, 5:131}):
if n in adict:
return adict[n]
adict[n]=11*a(n-1)-40*a(n-2)+55*a(n-3)-30*a(n-4)+6*a(n-5)
return adict[n]
for n in range(0,40):
print(a(n))
A012772
Take every 5th term of Padovan sequence A000931, beginning with the sixth term.
Original entry on oeis.org
1, 3, 12, 49, 200, 816, 3329, 13581, 55405, 226030, 922111, 3761840, 15346786, 62608681, 255418101, 1042002567, 4250949112, 17342153393, 70748973084, 288627200960, 1177482265857, 4803651498529, 19596955630177
Offset: 0
-
I:=[1, 3, 12]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 18 2012
-
CoefficientList[Series[(1-x)^2/(1-5*x+4*x^2-x^3),{x,0,33}],x] (* Vincenzo Librandi, Apr 18 2012 *)
LinearRecurrence[{5,-4,1},{1,3,12},30] (* Harvey P. Dale, Aug 15 2024 *)
A208736
Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level between 0 and 1.
Original entry on oeis.org
0, 0, 0, 1, 5, 22, 91, 361, 1392, 5265, 19653, 72694, 267179, 977593, 3565600, 12975457, 47142021, 171075606, 620303547, 2247803785, 8141857808, 29481675889, 106728951109, 386314552438, 1398132674955, 5059626441177, 18308871648576, 66249898660801
Offset: 0
- R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (8,-21,20,-5).
Cf.
A208737,
A206901,
A206902,
A206947-
A206950,
A001906,
A025192,
A081567,
A124302,
A124292,
A088305,
A086405,
A012781.
-
Join[{0, 0}, LinearRecurrence[{8, -21, 20, -5}, {0, 1, 5, 22}, 40]]
-
def a(n, d={0:0,1:0,2:0,3:1,4:5,5:22}):
if n in d:
return d[n]
d[n]=8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4)
return d[n]
A208737
Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with no 3-element antichain.
Original entry on oeis.org
0, 0, 0, 1, 7, 37, 175, 778, 3325, 13837, 56524, 227866, 909832, 3607294, 14227447, 55894252, 218937532, 855650749, 3338323915, 13007422705, 50631143323, 196928737582, 765495534433, 2974251390529, 11552064922624, 44856304154086
Offset: 0
- R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (10,-36,57,-39,9).
Cf.
A208736,
A206901,
A206902,
A206947-
A206950,
A001906,
A025192,
A081567,
A124302,
A124292,
A088305,
A086405,
A012781.
-
Join[{0}, LinearRecurrence[{10, -36, 57, -39, 9}, {0, 0, 1, 7, 37}, 40]]
-
def a(n, d={0:0,1:0,2:0,3:1,4:7,5:37}):
if n in d:
return d[n]
d[n]=10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5)
return d[n]
A084084
Length of lists created by n substitutions k -> Range[0,1+Mod[k+1,3]] starting with {0}.
Original entry on oeis.org
1, 3, 9, 28, 86, 265, 816, 2513, 7739, 23833, 73396, 226030, 696081, 2143648, 6601569, 20330163, 62608681, 192809420, 593775046, 1828587033, 5631308624, 17342153393, 53406819691, 164471408185, 506505428836, 1559831901918
Offset: 0
{0}, {0,1,2}, {0,1,2,0,1,2,3,0,1}, {0,1,2,0,1,2,3,0,1,0,1,2,0,1,2,3,0,1,0,1,2,0,1,2,0,1,2,3} have lengths 1, 3, 9, 28.
G.f. = 1 + 3*x + 9*x^2 + 28*x^3 + 86*x^4 + 265*x^5 + 816*x^6 + ...
-
[n le 3 select 3^(n-1) else 2*Self(n-1) +3*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Oct 16 2022
-
Length/@Flatten/@NestList[ # /. k_Integer:>Range[0, 1+Mod[k+1, 3]]&, {0}, 8]
LinearRecurrence[{2,3,1}, {1,3,9}, 41] (* G. C. Greubel, Oct 16 2022 *)
-
def A084084_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)/(1-2*x-3*x^2-x^3) ).list()
A084084_list(40) # G. C. Greubel, Oct 16 2022
Showing 1-5 of 5 results.
Comments