A356639 Number of integer sequences b with b(1) = 1, b(m) > 0 and b(m+1) - b(m) > 0, of length n which transform under the map S into a nonnegative integer sequence. The transform c = S(b) is defined by c(m) = Product_{k=1..m} b(k) / Product_{k=2..m} (b(k) - b(k-1)).
1, 1, 3, 17, 155, 2677, 73327, 3578339, 329652351
Offset: 1
Examples
a(4) = 17. The 17 transformation pairs of length 4 are: {1, 2, 3, 4} = S({1, 2, 6, 24}). {1, 2, 3, 5} = S({1, 2, 6, 15}). {1, 2, 3, 6} = S({1, 2, 6, 12}). {1, 2, 3, 9} = S({1, 2, 6, 9}). {1, 2, 3, 12} = S({1, 2, 6, 8}). {1, 2, 3, 21} = S({1, 2, 6, 7}). {1, 2, 4, 5} = S({1, 2, 4, 20}). {1, 2, 4, 6} = S({1, 2, 4, 12}). {1, 2, 4, 8} = S({1, 2, 4, 8}). {1, 2, 4, 12} = S({1, 2, 4, 6}). {1, 2, 4, 20} = S({1, 2, 4, 5}). {1, 2, 6, 7} = S({1, 2, 3, 21}). {1, 2, 6, 8} = S({1, 2, 3, 12}). {1, 2, 6, 9} = S({1, 2, 3, 9}). {1, 2, 6, 12} = S({1, 2, 3, 6}). {1, 2, 6, 15} = S({1, 2, 3, 5}). {1, 2, 6, 24} = S({1, 2, 3, 4}). b(1) = 1 by definition, b(2) = 1+1 as 1 has only 1 as divisor. a(3) = A000005(b(2)*b(2)) = 3. The divisors of b(2) are 1,2,4. So b(3) can be b(2)+1, b(2)+2 and b(2)+4. a(4) = A000005((b(2)+1)*(b(2)+4)) + A000005((b(2)+2)*(b(2)+2)) + A000005((b(2)+4)*(b(2)+1)) = 17.
Crossrefs
Cf. A000005.
Comments