cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Nikita Gogin

Nikita Gogin's wiki page.

Nikita Gogin has authored 2 sequences.

A245086 Central values of the n-th discrete Chebyshev polynomials of order 2n.

Original entry on oeis.org

1, 0, -6, 0, 90, 0, -1680, 0, 34650, 0, -756756, 0, 17153136, 0, -399072960, 0, 9465511770, 0, -227873431500, 0, 5550996791340, 0, -136526995463040, 0, 3384731762521200, 0, -84478098072866400, 0, 2120572665910728000, 0, -53494979785374631680, 0
Offset: 0

Author

Nikita Gogin, Jul 11 2014

Keywords

Comments

In the general case the n-th discrete Chebyshev polynomial of order N is D(N,n;x) = Sum_{i = 0..n} (-1)^i*C(n,i)*C(N-x,n-i)*C(x,i). For N = 2*n , x = n, one gets a(n) = D(2n,n;n) = Sum_{i = 0..n} (-1)^i*C(n,i)^3 that equals (due to Dixon's formula) 0 for odd n and (-1)^m*(3m)!/(m!)^3 for n = 2*m. (Riordan, 1968) So, a(2*m) = (-1)^m*A006480(m).

References

  • John Riordan, Combinatorial Identities, John Willey&Sons Inc., 1968.

Programs

  • Mathematica
    Table[Coefficient[Simplify[JacobiP[n,0,-(2*n+1),(1+t^2)/(1-t^2)]*(1-t^2)^n],t,n],{n,0,20}]
  • Python
    from math import factorial
    def A245086(n): return 0 if n&1 else (-1 if (m:=n>>1)&1 else 1)*factorial(3*m)//factorial(m)**3 # Chai Wah Wu, Oct 04 2022

Formula

a(n) is a coefficient at t^n in (1-t^2)^n*P(0,-(2*n+1);n;(1+t^2)/(1-t^2)), where P(a,b;k;x) is the k-th Jacobi polynomial (Gogin and Hirvensalo, 2007).
G.f.: Hypergeometric2F1[1/3,2/3,1,-27*x^2].
a(2*m+1) = 0, a(2*m) = (-1)^m*A006480(m).
From Peter Bala, Aug 04 2016: (Start)
a(n) = Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(2*n - k,n)*binomial(n + k,n) (Sun and Wang).
a(n) = Sum_{k = 0..n} (-1)^(n + k)*binomial(n + k, n - k)*binomial(2*k, k)*binomial(2*n - k, n) (Gould, Vol.5, 9.23).
a(n) = -1/(n + 1)^3 * A273630(n+1). (End)
From Peter Bala, Mar 22 2022: (Start)
a(n) = - (3*(3*n-2)*(3*n-4)/n^2)*a(n-2).
a(n) = [x^n] (1 - x)^(2*n) * P(n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. Compare with A002894(n) = binomial(2*n,n)^2 = [x^n] (1 - x)^(2*n) * P(2*n,(1 + x)/(1 - x)). Cf. A103882. (End)
From Peter Bala, Jul 23 2023: (Start)
a(n) = [x^n] G(x)^(3*n), where the power series G(x) = 1 - x^2 + 2*x^4 - 14*x^6 + 127*x^8 - 1364*x^10 + ... appears to have integer coefficients.
exp(Sum_{n >= 1} a(n)*x^n/n) = F(x)^3, where the power series F(x) = 1 - x^2 + 8*x^4 - 101*x^6 + 1569*x^8 - 27445*x^10 + ..., appears to have integer coefficients. See A229452.
Row 1 of A364303. (End)
a(n) = Sum_{k = 0..n} (-1)^(n-k) * binomial(n+k, k)^2 * binomial(3*n+1, n-k). Cf. A183204.- Peter Bala, Sep 20 2024

A116157 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) + a(n-5).

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 17, 22, 43, 60, 110, 161, 283, 428, 732, 1132, 1901, 2984, 4950, 7848, 12912, 20609, 33721, 54065, 88137, 141737, 230490, 371411, 602982, 972961, 1577840, 2548288, 4129457, 6673335, 10808634, 17474230, 28293116, 45753765, 74064872, 119794804
Offset: 0

Author

Nikita Gogin & Aleksandr Myllari (alemio(AT)utu.fi), Apr 15 2007

Keywords

Comments

A Fibonacci-Padovan sequence.
The summation over some naturally chosen planes in the pyramid composed of MacWilliams transform matrices yields this sequence, which is the convolution of the Fibonacci numbers and the (alternating) Padovan numbers. Namely, the formula F(n) = Sum_{i+k=n, i>0, k>0} binomial(k,i) = Sum_{i+k=n, i>0, k>0} Krawtchouk[{k,i},0] where Krawtchouk[{k,i},x] is the i-th Krawtchouk polynomial of order k has a natural generalization as G(n) = Sum_{i+j+k=n, i>0,j>0, k>0} Krawtchouk[{k,i},j].

Crossrefs

Programs

  • GAP
    a:=[1,1,3,3,7];; for n in [6..50] do a[n]:=a[n-1]+2*a[n-2]- 2*a[n-3]+a[n-5]; od; a; # G. C. Greubel, May 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x-x^2)*(1-x^2+x^3)) )); // G. C. Greubel, May 10 2019
    
  • Mathematica
    a[0]=1; a[1]=1; a[2]=3; a[3]=3; a[4]=7; a[n_]:=a[n]=a[n-1]+2a[n-2]-2a[n-3]+a[n-5]; Table[a[n], {n, 0, 50}]
    LinearRecurrence[{1,2,-2,0,1},{1,1,3,3,7},50] (* Harvey P. Dale, Mar 07 2015 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/((1-x-x^2)*(1-x^2+x^3))) \\ G. C. Greubel, May 10 2019
    
  • Sage
    (1/((1-x-x^2)*(1-x^2+x^3))).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, May 10 2019
    

Formula

G.f.: 1/((1-x-x^2)*(1-x^2+x^3)).