cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A097550 Number of positive words of length n in the monoid Br_3 of positive braids on 4 strands.

Original entry on oeis.org

1, 3, 8, 19, 44, 102, 237, 551, 1281, 2978, 6923, 16094, 37414, 86977, 202197, 470051, 1092736, 2540303, 5905488, 13728594, 31915109, 74193627, 172479257, 400965626, 932131991, 2166943978, 5037533578, 11710844769, 27224411129, 63289077427
Offset: 0

Views

Author

D n Verma, Aug 16 2004

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select Fibonacci(2*n) else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Apr 19 2021
    
  • Maple
    a:= n-> (<<1|1|2>>. <<3|1|0>, <-2|0|1>, <1|0|0>>^n)[1$2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 24 2008
  • Mathematica
    LinearRecurrence[{3,-2,1},{1,3,8},30] (* Harvey P. Dale, Jul 10 2019 *)
  • Sage
    @CachedFunction
    def A095263(n): return sum( binomial(n+j+2, 3*j+2) for j in (0..n//2) )
    def A097550(n): return A095263(n) +A095263(n-2)
    [A097550(n) for n in (0..30)] # G. C. Greubel, Apr 19 2021

Formula

G.f.: (1+x^2)/(1 - 3*x+ 2*x^2 - x^3).
a(n) = term (1,1) in the 1 X 3 matrix [1,1,2].[3,1,0; -2,0,1; 1,0,0]^n. - Alois P. Heinz, Jul 24 2008
a(n) = A095263(n) + A095263(n-2). - G. C. Greubel, Apr 19 2021

Extensions

More terms from Ryan Propper, Sep 27 2005

A136303 Expansion of g.f. (1 +x^2)/((1-x)^2*(1 -3*x +2*x^2 -x^3)).

Original entry on oeis.org

1, 5, 17, 48, 123, 300, 714, 1679, 3925, 9149, 21296, 49537, 115192, 267824, 622653, 1447533, 3365149, 7823068, 18186475, 42278476, 98285586, 228486323, 531166317, 1234811937, 2870589548, 6673311137, 15513566304, 36064666240, 83840177305
Offset: 0

Views

Author

Richard Choulet, Mar 22 2008

Keywords

Comments

Previous name: Transform of 0 by the reciprocal transformation to T_{1,1} (see link).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x^2)/((1-x)^2*(1-3*x+2*x^2-x^3)) )); // G. C. Greubel, Apr 19 2021
    
  • Maple
    A136303:= n-> -2*(n+2) + add( (5*binomial(n+k+2, 3*k+2) - 4*binomial(n +k+1, 3*k+2) + 2*binomial(n+k, 3*k+2)), k=0..n/2 );
    seq(A136303(n), n=0..40); # G. C. Greubel, Apr 19 2021
  • Mathematica
    LinearRecurrence[{5,-9,8,-4,1},{1,5,17,48,123},40] (* Harvey P. Dale, Apr 01 2018 *)
  • Sage
    def A136303_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)/((1-x)^2*(1-3*x+2*x^2-x^3)) ).list()
    A136303_list(40) # G. C. Greubel, Apr 19 2021

Formula

G.f.: f(z) = 1 +5*z + ... = (1+z^2)/((1-z)^2*(1-3*z+2*z^2-z^3)).
a(n+5) = 5*a(n+4) -9*a(n+3) +8*a(n+2) -4*a(n+1) +a(n) (n>=0). - Richard Choulet, Apr 07 2009
From G. C. Greubel, Apr 19 2021: (Start)
a(n) = -2*(n+2) + 5*A095263(n) - 4*A095263(n-1) + 2*A095263(n-2).
a(n) = -2*(n+2) + Sum_{k=0..floor(n/2)} (5*binomial(n+k+2, 3*k+2) - 4*binomial(n +k+1, 3*k+2) + 2*binomial(n+k, 3*k+2)). (End)

A136304 Expansion of g.f. (1-z)^2*(1-sqrt(1-4*z))/(2*z*(1 - 3*z + 2*z^2 - z^3)).

Original entry on oeis.org

1, 2, 5, 14, 40, 116, 344, 1047, 3273, 10500, 34503, 115838, 396244, 1377221, 4851665, 17285662, 62173297, 225424527, 822919439, 3021713140, 11151957809, 41340655956, 153853915410, 574593145517, 2152679745351, 8087904580883, 30466311814036, 115036597198845
Offset: 0

Views

Author

Richard Choulet, Mar 22 2008

Keywords

Comments

Previous name was: Transform of A000108 by the T_{0,0} transformation (see link).

Crossrefs

Programs

  • Magma
    A034943:= func< n | (&+[Binomial(n+j-1, 3*j): j in [0..Floor(n/2)]]) >;
    [(&+[A034943(j+1)*Catalan(n-j): j in [0..n]]): n in [0..35]]; // G. C. Greubel, Apr 19 2021
    
  • Mathematica
    A034943[n_]:= A034943[n]= Sum[Binomial[n+k-1, 3*k], {k, 0, n/2}];
    Table[Sum[A034943[j+1]*CatalanNumber[n-j], {j,0,n}], {n,0,35}] (* G. C. Greubel, Apr 19 2021 *)
  • Sage
    def A034943(n): return sum(binomial(n+j-1,3*j) for j in (0..n//2))
    [sum(A034943(j+1)*catalan_number(n-j) for j in (0..n)) for n in (0..35)] # G. C. Greubel, Apr 19 2021

Formula

G.f.: (1-z)^2*(1-sqrt(1-4*z))/(2*z*(1 - 3*z + 2*z^2 - z^3)).
Conjecture: (n+1)*a(n) + (-8*n+1)*a(n-1) + 3*(7*n-8)*a(n-2) + (-23*n+49)*a(n-3) + (13*n-32)*a(n-4) + 2*(-2*n+7)*a(n-5) = 0. - R. J. Mathar, Feb 29 2016
a(n) = Sum_{j=0..n} A034943(j+1)*A000108(n-j). - G. C. Greubel, Apr 19 2021

Extensions

New name using g.f., Joerg Arndt, Apr 20 2021

A136305 Expansion of g.f. (3 -x +2*x^2)/(1 -3*x +2*x^2 -x^3).

Original entry on oeis.org

3, 8, 20, 47, 109, 253, 588, 1367, 3178, 7388, 17175, 39927, 92819, 215778, 501623, 1166132, 2710928, 6302143, 14650705, 34058757, 79177004, 184064203, 427897358, 994740672, 2312491503, 5375890523, 12497429235, 29052998162, 67540026539, 157011512528
Offset: 0

Views

Author

Richard Choulet, Mar 22 2008

Keywords

Comments

Previous name: Transform of A000027 by the T_{1,2} transformation (see link).

Crossrefs

Programs

  • Magma
    [n le 3 select 2^(n-1)*(n+2) else 3*Self(n-1) - 2*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Apr 19 2021
    
  • Mathematica
    LinearRecurrence[{3,-2,1}, {3,8,20}, 40] (* G. C. Greubel, Apr 19 2021 *)
    CoefficientList[Series[(3-x+2x^2)/(1-3x+2x^2-x^3),{x,0,40}],x] (* Harvey P. Dale, Oct 15 2021 *)
  • Sage
    @CachedFunction
    def a(n): return 2^n*(n+3) if n<3 else sum((-1)^j*(3-j)*a(n-j-1) for j in (0..2))
    [a(n) for n in (0..40)] # G. C. Greubel, Apr 19 2021

Formula

G.f.: f(z) = 3 +8*z + ... = (3 -z +2*z^2)/(1 -3*z +2*z^2 -z^3).
a(n+3) = 3*a(n+2) -2*a(n+1) +a(n) (n>=0). - Richard Choulet, Apr 07 2009

A098601 Expansion of (1+2*x)/((1+x)*(1-x^2-x^3)).

Original entry on oeis.org

1, 1, 0, 3, 0, 4, 2, 5, 5, 8, 9, 14, 16, 24, 29, 41, 52, 71, 92, 124, 162, 217, 285, 380, 501, 666, 880, 1168, 1545, 2049, 2712, 3595, 4760, 6308, 8354, 11069, 14661, 19424, 25729, 34086, 45152, 59816, 79237, 104969, 139052, 184207, 244020, 323260
Offset: 0

Views

Author

Paul Barry, Sep 17 2004

Keywords

Comments

Diagonal sums of A098599.
The signed sequence 1,-1,0,-3,0,-4,... gives the diagonal sums of A100218. - Paul Barry, Nov 09 2004

Crossrefs

Programs

  • Magma
    I:=[1,1,0,3]; [n le 4 select I[n] else -Self(n-1) +Self(n-2) +2*Self(n-3) +Self(n-4): n in [1..55]]; // G. C. Greubel, Mar 27 2024
    
  • Mathematica
    CoefficientList[Series[(1+2x)/((1+x)(1-x^2-x^3)),{x,0,50}],x] (* or *) LinearRecurrence[{-1,1,2,1},{1,1,0,3},50] (* Harvey P. Dale, Dec 14 2011 *)
  • SageMath
    def A098601(n): return sum( binomial(k, n-2*k) + binomial(k-1, n-2*k-1) for k in range(1+n//2))
    [A098601(n) for n in range(56)] # G. C. Greubel, Mar 27 2024

Formula

G.f.: x/((1+x)*(1-x^2-x^3)) + 1/(1-x^2-x^3).
a(n) = Sum_{k=0..floor(n/2)} (binomial(k, n-2*k) + binomial(k-1, n-2*k-1)).
a(n) = -a(n-1) + a(n-2) + 2*a(n-3) + a(n-4).
Inverse binomial transform of A135364. - Paul Curtz, Apr 25 2008

A159340 Transform of the finite sequence (1, 0, -1) by the T_{0,1} transformation (see link).

Original entry on oeis.org

2, 3, 6, 16, 38, 88, 204, 474, 1102, 2562, 5956, 13846, 32188, 74828, 173954, 404394, 940102, 2185472, 5080606, 11810976, 27457188, 63830218, 148387254, 344958514, 801931252, 1864263982, 4333887956, 10075067156, 23421689538, 54448822258
Offset: 0

Views

Author

Richard Choulet, Apr 11 2009

Keywords

Crossrefs

Cf. A135364.

Programs

  • Magma
    I:=[6, 16, 38]; [2, 3] cat [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 25 2018
  • Maple
    a(0):=2: a(1):=3:a(2):=6: a(3):=16:a(4):=38:for n from 2 to 31 do a(n+3):=3*a(n+2)-2*a(n+1)+a(n):od:seq(a(i),i=0..31);
  • Mathematica
    Join[{2, 3}, LinearRecurrence[{3, -2, 1}, {6, 16, 38}, 49]] (* G. C. Greubel, Jun 25 2018 *)
  • PARI
    z='z+O('z^30); Vec(((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2)+((1-z+z^2)/(1-3*z+2*z^2-z^3))) \\ G. C. Greubel, Jun 25 2018
    

Formula

O.g.f.: f(z) = ((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2)+((1-z+z^2)/(1-3*z+2*z^2-z^3)).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) for n >= 5, with a(0)=2, a(1)=3, a(2)=6, a(3)=16, a(4)=38.

A159341 Transform of the finite sequence (1, 0, -1, 0, 1) by the T_{0,1} transformation (see link).

Original entry on oeis.org

2, 3, 6, 16, 39, 89, 206, 479, 1114, 2590, 6021, 13997, 32539, 75644, 175851, 408804, 950354, 2209305, 5136011, 11939777, 27756614, 64526299, 150005446, 348720354, 810676469, 1884594145, 4381149851, 10184937732, 23677107639, 55042597304
Offset: 0

Views

Author

Richard Choulet, Apr 11 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[39, 89, 206]; [2, 3, 6, 16] cat [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 25 2018
  • Maple
    a(0):=2: a(1):=3:a(2):=6: a(3):=16:a(4):=39:a(5):=89:a(6):=206:for n from 4 to 31 do a(n+3):=3*a(n+2)-2*a(n+1)+a(n):od:seq(a(i),i=0..31);
  • Mathematica
    Join[{2, 3, 6, 16}, LinearRecurrence[{3, -2, 1}, {39, 89, 206}, 47]] (* G. C. Greubel, Jun 25 2018 *)
  • PARI
    z='z+O('z^30); Vec(((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2+z^4) + ((1-z+z^2)/(1-3*z+2*z^2-z^3))) \\ G. C. Greubel, Jun 25 2018
    

Formula

O.g.f: f(z) = ((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2+z^4) + ((1-z+z^2)/(1-3*z+2*z^2-z^3)).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) for n >= 7, with a(0)=2, a(1)=3, a(2)=6, a(3)=16, a(4)=39, a(5)=89, a(6)=206.

A159342 Transform of the finite sequence (1, 0, -1, 0, 1, 0, -1) by the T_{0,1} transform (see link).

Original entry on oeis.org

2, 3, 6, 16, 39, 89, 207, 480, 1116, 2595, 6033, 14025, 32604, 75795, 176202, 409620, 952251, 2213715, 5146263, 11963610, 27812019, 64655100, 150304872, 349416435, 812294661, 1888355985, 4389895068, 10205267895, 23724369534, 55152467880
Offset: 0

Views

Author

Richard Choulet, Apr 11 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[207, 480, 1116]; [2, 3, 6, 16, 39, 89] cat [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Jun 17 2018
  • Maple
    a(0):=2: a(1):=3:a(2):=6: a(3):=16:a(4):=39:a(5):=89:a(6):=207:a(7):=480:a(8):=1116:for n from 6 to 31 do a(n+3):=3*a(n+2)-2*a(n+1)+a(n):od:seq(a(i),i=0..31);
  • Mathematica
    Join[{2, 3, 6, 16, 39, 89}, LinearRecurrence[{3, -2, 1}, {207, 480, 1116}, 50]] (* G. C. Greubel, Jun 17 2018 *)
  • PARI
    m=50; v=concat([207, 480, 1116], vector(m-3)); for(n=4, m, v[n] = 3*v[n-1] -2*v[n-2] +v[n-3]); concat([2, 3, 6, 16, 39, 89], v) \\ G. C. Greubel, Jun 17 2018
    

Formula

O.g.f.: ((1-x)^2/(1-3*x+2*x^2-x^3))*(1-x^2+x^4+x^6)+((1-x+x^2)/(1-3*x+2*x^2-x^3)).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) for n >= 9, with a(0)=2, a(1)=3, a(2)=6, a(3)=16, a(4)=39, a(5)=89, a(6)=207, a(7)=480, a(8)=1116.

A159343 Transform of A056594 by the T_{0,1} transformation (see link).

Original entry on oeis.org

2, 3, 6, 16, 39, 89, 205, 478, 1113, 2586, 6010, 13973, 32485, 75517, 175554, 408115, 948754, 2205584, 5127359, 11919665, 27709861, 64417610, 149752773, 348132962, 809310950, 1881419697, 4373770153, 10167782017, 23637225442, 54949882443
Offset: 0

Views

Author

Richard Choulet, Apr 11 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[2, 3, 6, 16, 39]; [n le 5 select I[n] else 3*Self(n-1) -3*Self(n-2) +4*Self(n-3) -2*Self(n-4) +Self(n-5): n in [1..50]]; // G. C. Greubel, Jun 17 2018
  • Maple
    a(0):=2: a(1):=3:a(2):=6: a(3):=16:a(4):=39:for n from 0 to 31 do a(n+5):=3*a(n+4)-3*a(n+3)+4*a(n+2)-2*a(n+1)+a(n):od:seq(a(i),i=0..31);
  • Mathematica
    LinearRecurrence[{3, -3, 4, -2, 1}, {2, 3, 6, 16, 39}, 50] (* G. C. Greubel, Jun 17 2018 *)
  • PARI
    m=32; v=concat([2, 3, 6, 16, 39], vector(m-5)); for(n=6, m, v[n] = 3*v[n-1] -3*v[n-2] +4*v[n-3] -2*v[n-4] +v[n-5]); v \\ G. C. Greubel, Jun 17 2018
    

Formula

O.g.f.: ((1-z)^2/(1-3*z+2*z^2-z^3))*(1/(1+z^2))+((1-z+z^2)/(1-3*z+2*z^2-z^3)).
a(n) = 3*a(n-1) - 3*a(n-2) + 4*a(n-3) - 2*a(n-4) + a(n-5) for n>=5, with a(0)=2, a(1)=3, a(2)=6, a(3)=16, a(4)=39.

A137495 a(n) = A098601(2n) + A098601(2n+1).

Original entry on oeis.org

2, 3, 4, 7, 13, 23, 40, 70, 123, 216, 379, 665, 1167, 2048, 3594, 6307, 11068, 19423, 34085, 59815, 104968, 184206, 323259, 567280, 995507, 1746993, 3065759, 5380032, 9441298, 16568323, 29075380, 51023735, 89540413, 157132471, 275748264, 483904470, 849193147, 1490230088
Offset: 0

Views

Author

Paul Curtz, Apr 27 2008

Keywords

Crossrefs

Programs

Formula

a(3n) = A135364(2n+1). a(3n+1) = A137584(2n+1). a(3n+2) = A137531(2n+2).
From R. J. Mathar, Jul 06 2011: (Start)
G.f.: ( -2+x ) / ( -1+2*x-x^2+x^3 ).
a(n) = 2*A005314(n+1) - A005314(n). (End)
Showing 1-10 of 10 results.