cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012780 Expansion of e.g.f. arcsin(tan(x)) (odd powers only).

Original entry on oeis.org

1, 3, 45, 1743, 133305, 17089083, 3302755365, 896199578823, 324729845802225, 151401766241310963, 88276508686397289885, 62925559543228826845503, 53835082550295989275314345, 54438337988081689498005862443, 64228314189095958231926869651605
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Comments

arcsin(sec(x)*sin(x)) = x + 3/3!*x^3 + 45/5!*x^5 + 1743/7!*x^7 + ...
arccos(tan(x)) = Pi/2 - x - 3*x^3/3! - 45*x^5/5! - 1743*x^7/7! - ...

Programs

  • Mathematica
    a[ n_] := If[ n<0, 0, (2*n+1)! * SeriesCoefficient[ ArcSin @ Tan @ x, {x, 0, 2*n+1}]]; (* Michael Somos, Sep 01 2022 *)
  • PARI
    {a(n) = if( n<0, 0, (2*n+1)! * polcoeff( asin( tan(x + O(x^(2*n+2)))), 2*n+1))}; /* Michael Somos, Sep 01 2022 */

Formula

(8 + z1)*z3 = - 96*z2 + 9*z2^2 - 256*z1 + 72*z2*z1 + 288*z1^2 + 6*z2*z1^2 + 48*z1^2 + z1^4 where z1 = f'(x)^2, z2 = f''(x)^2, z3 = f'''(x)^2, and f(x) = arcsin(tan(x)). - Michael Somos, Sep 01 2022
a(n) = (2n+1)! * [x^(2n+1)] arcsin(tan(x)). - Alois P. Heinz, Sep 02 2022

Extensions

Name clarified by Joerg Arndt, Sep 02 2022