cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012885 Suffixes of 357686312646216567629137 (all primes).

Original entry on oeis.org

7, 37, 137, 9137, 29137, 629137, 7629137, 67629137, 567629137, 6567629137, 16567629137, 216567629137, 6216567629137, 46216567629137, 646216567629137, 2646216567629137, 12646216567629137, 312646216567629137, 6312646216567629137, 86312646216567629137
Offset: 1

Views

Author

Larry Calmer (larry(AT)wri.com), Simon Plouffe

Keywords

Comments

From Mikk Heidemaa, Mar 23 2015: (Start)
a(2),...,a(24) all have a single representation (in positive integers) as the sum of two squares (e.g., a(24) = 416865370156^2 + 428846797599^2) and as the hypotenuse of a primitive Pythagorean triple (357686312646216567629137^2 = 10132838975618776700465^2 + 357542758042644694110888^2).
---
a^2 + b^2 + c^2 + d^2 + e^2 + f^2 = 357686312646216567629137^2;
a=304233682432674451033719; b=185074861663432734470527;
c=4189176178164916432878; d=33333333333333333333333; e=3333333; f=3.
---
a^2 + b^2 + c^2 + d^2 + e^2 + f^2 = 357686312646216567629137^3;
a=210197737649788368191109924028342434;
b=39738123500625252940689952285037741;
c=777777777777777777777777;
d=777777777777777777777777;
e=777777777777777777;
f=777777777777.
a=170350493188466620042802284807886346;
b=129394423538599186274382140531063939;
c=777777777777777777777777;
d=777777777777777777777777;
e=777777777777777777;
f=777777777777.
---
x^2 + y^2 = 357686312646216567629137^3;
x=144701758632763782416276428525674993;
y=157555096461604743754426503960480452;
x=149107037120999813337660002835835372;
y=153392629723324670471173010334042063.
(End)

Examples

			.......................7
......................37
.....................137
....................9137
...................29137
..................629137
.................7629137
................67629137
...............567629137
..............6567629137
.............16567629137
............216567629137
...........6216567629137
..........46216567629137
.........646216567629137
........2646216567629137
.......12646216567629137
......312646216567629137
.....6312646216567629137
....86312646216567629137
...686312646216567629137
..7686312646216567629137
.57686312646216567629137
357686312646216567629137
------------------------
		

Crossrefs

Cf. A024785.

Programs

Formula

a(n) = 357686312646216567629137 mod 10^n. - José de Jesús Camacho Medina, Dec 21 2016