A013595 Irregular triangle read by rows: coefficients of cyclotomic polynomial Phi_n(x) (exponents in increasing order).
0, 1, -1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 0, 1, -1, 1, 0, -1, 1
Offset: 0
Examples
Phi_0 = x; Phi_1 = x - 1; Phi_2 = x + 1; Phi_3 = x^2 + x + 1; Phi_4 = x^2 + 1; ... From _Wolfdieter Lang_, Oct 29 2013: (Start) The irregular triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 0: 0 1 1: -1 1 2: 1 1 3: 1 1 1 4: 1 0 1 5: 1 1 1 1 1 6: 1 -1 1 7: 1 1 1 1 1 1 1 8: 1 0 0 0 1 9: 1 0 0 1 0 0 1 10: 1 -1 1 -1 1 11: 1 1 1 1 1 1 1 1 1 1 1 12: 1 0 -1 0 1 13: 1 1 1 1 1 1 1 1 1 1 1 1 1 14: 1 -1 1 -1 1 -1 1 15: 1 -1 0 1 -1 1 0 -1 1 ... Phi_15(x) = (x^1 - 1)*((x^3 - 1)^(-1))*((x^5 - 1)^(-1))*(x^15 - 1) because mu(15) = mu(1) = +1 and mu(3) = mu(5) = -1. Hence Phi_15(x) = 1 - x + x^3 - x^4 + x^5 - x^7 + x^8, giving row n = 15. Example for the reduction via the squarefree kernel: Phi_12(x) = Phi_6(x^(12/6)) = Phi_6(x^2). By the formula with the Mobius function Phi_6(x) = Phi_2(x^3)/Phi_2(x) = 1 - x + x^2 and with x -> x^2 this becomes Phi_12(x) = 1 - x^2 + x^4. (End)
References
- E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968; see p. 90.
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 325.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1991, p. 137.
- K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982, p. 194.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Emma Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 42 (1936), 389-392.
- Rakshith Rajashekar, Marco Di Renzo, K.V.S. Hari, L. Hanzo, A generalised transmit and receive diversity condition for feedback assisted MIMO systems: theory & applications in full-duplex spatial modulation, 2017.
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial.
- Wikipedia, Cyclotomic Polynomial.
Crossrefs
Programs
-
Maple
N:= 100: # to get coefficients up to cyclotomic(N,x) with(numtheory): for n from 0 to N do C:= cyclotomic(n,x); L[n]:= seq(coeff(C,x,i),i=0..degree(C)); od: A:= [seq](L[n],n=0..N): # note that A013595(n) = A[n+1] # Robert Israel, Apr 17 2014
-
Mathematica
Table[CoefficientList[x^KroneckerDelta[n] Cyclotomic[n, x], x], {n, 0, 15}] // Flatten (* Peter Luschny, Dec 27 2016 *)
-
PARI
row(n) = if (n==0, p=x, p = polcyclo(n)); Vecrev(p); \\ Michel Marcus, Dec 14 2015
Formula
a(n,m) = [x^m] Phi_n(x), n >= 0, 0 <= m <= phi(n), with phi(n) = A000010(n). - Wolfdieter Lang, Oct 29 2013
Extensions
Maple program corrected by Robert Israel, Apr 17 2014
Comments