A013596 Irregular triangle of coefficients of cyclotomic polynomial Phi_n(x) (exponents in decreasing order).
1, 0, 1, -1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 0, 1, -1, 1, 0, -1, 1, 1, 0, 0, 0, 0
Offset: 0
Examples
Phi_0 = x --> Row 0: [1, 0] Phi_1 = x - 1 --> Row 1: [1, -1] Phi_2 = x + 1 --> Row 2: [1, 1] Phi_3 = x^2 + x + 1 --> Row 3: [1, 1, 1] Phi_4 = x^2 + 1 --> Row 4: [1, 0, 1] etc. After row zero, each row n has A039649(n) terms.
References
- E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968; see p. 90.
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 325.
- K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982, p. 194.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..45566, rows 0..385 flattened
Programs
-
Maple
with(numtheory): [ seq(cyclotomic(n,x), n=0..48) ];
-
Mathematica
Join[{1, 0}, Table[ CoefficientList[ Cyclotomic[n, x], x] // Reverse, {n, 1, 16}] // Flatten] (* Jean-François Alcover, Dec 11 2012 *)
-
PARI
A013595row(n) = { if(!n, p=x, p = polcyclo(n)); Vecrev(p); }; \\ This function from Michel Marcus's code for A013595. n=0; for(r=0,385,v=A013595row(r);k=length(v);while(k>0,write("b013596.txt", n, " ", v[k]);n=n+1;k=k-1)); \\ Antti Karttunen, Aug 13 2017
Extensions
Example section edited by Antti Karttunen, Aug 13 2017
Comments