cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013603 Difference between 2^n and the nearest prime less than or equal to 2^n.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 5, 3, 3, 9, 3, 1, 3, 19, 15, 1, 5, 1, 3, 9, 3, 15, 3, 39, 5, 39, 57, 3, 35, 1, 5, 9, 41, 31, 5, 25, 45, 7, 87, 21, 11, 57, 17, 55, 21, 115, 59, 81, 27, 129, 47, 111, 33, 55, 5, 13, 27, 55, 93, 1, 57, 25, 59, 49, 5, 19, 23, 19, 35, 231, 93, 69, 35, 97, 15
Offset: 1

Views

Author

James Kilfiger (mapdn(AT)csv.warwick.ac.uk)

Keywords

Comments

If a(n) = 1, then n is prime and 2^n - 1 is a Mersenne prime. - Franz Vrabec, Sep 27 2005
Using the first variant A007917 (rather than A151799) of the prevprime() function, the sequence is well defined for n = 1, with a(1) = 2^1 - prevprime(2^1) = 2 - 2 = 0. - M. F. Hasler, Sep 09 2015
In Mathematica, one can use NextPrime with a second argument of -1 to obtain the next smaller prime. As almost all the powers of 2 are composite, this produces the proper results for most of this sequence. However, NextPrime[2, -1] returns -2 rather than the expected 2, which would consequently mean a(1) = 4 rather than 0. - Alonso del Arte, Dec 10 2016

Crossrefs

Equivalent sequence for next prime: A092131.

Programs

  • Maple
    seq(2^i-prevprime(2^i),i=2..100);
  • Mathematica
    {0} ~Join~ Array[With[{c = 2^#}, c - NextPrime[c, -1]] &, 80, 2] (* Harvey P. Dale, Jul 23 2013 *)
    Table[2^n - Prime[PrimePi[2^n]], {n, 80}] (* Alonso del Arte, Dec 10 2016 *)
  • PARI
    a(n) = 2^n - precprime(2^n); \\ Michel Marcus, Apr 04 2020

Formula

a(n) = A049711(2^n). - R. J. Mathar, Nov 28 2016
a(n) = 2^n - prevprime(2^n) = 2^n - prime(primepi(2^n)). - Alonso del Arte, Dec 10 2016

Extensions

Extended to a(1) = 0 by M. F. Hasler, Sep 09 2015