A013603 Difference between 2^n and the nearest prime less than or equal to 2^n.
0, 1, 1, 3, 1, 3, 1, 5, 3, 3, 9, 3, 1, 3, 19, 15, 1, 5, 1, 3, 9, 3, 15, 3, 39, 5, 39, 57, 3, 35, 1, 5, 9, 41, 31, 5, 25, 45, 7, 87, 21, 11, 57, 17, 55, 21, 115, 59, 81, 27, 129, 47, 111, 33, 55, 5, 13, 27, 55, 93, 1, 57, 25, 59, 49, 5, 19, 23, 19, 35, 231, 93, 69, 35, 97, 15
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..5000 (corrected by Sean A. Irvine, Jan 18 2019)
- V. Danilov, Table for large n.
- Corbin Simpson, 2^255 - 19 and Elliptic Curve Cryptography (MegaFavNumbers), Youtube video (2020).
Crossrefs
Programs
-
Maple
seq(2^i-prevprime(2^i),i=2..100);
-
Mathematica
{0} ~Join~ Array[With[{c = 2^#}, c - NextPrime[c, -1]] &, 80, 2] (* Harvey P. Dale, Jul 23 2013 *) Table[2^n - Prime[PrimePi[2^n]], {n, 80}] (* Alonso del Arte, Dec 10 2016 *)
-
PARI
a(n) = 2^n - precprime(2^n); \\ Michel Marcus, Apr 04 2020
Formula
a(n) = A049711(2^n). - R. J. Mathar, Nov 28 2016
a(n) = 2^n - prevprime(2^n) = 2^n - prime(primepi(2^n)). - Alonso del Arte, Dec 10 2016
Extensions
Extended to a(1) = 0 by M. F. Hasler, Sep 09 2015
Comments