cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013667 Decimal expansion of zeta(9).

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 8, 3, 9, 2, 8, 2, 6, 0, 8, 2, 2, 1, 4, 4, 1, 7, 8, 5, 2, 7, 6, 9, 2, 3, 2, 4, 1, 2, 0, 6, 0, 4, 8, 5, 6, 0, 5, 8, 5, 1, 3, 9, 4, 8, 8, 8, 7, 5, 6, 5, 4, 8, 5, 9, 6, 6, 1, 5, 9, 0, 9, 7, 8, 5, 0, 5, 3, 3, 9, 0, 2, 5, 8, 3, 9, 8, 9, 5, 0, 3, 9, 3, 0, 6, 9, 1, 2, 7, 1, 6, 9, 5, 8
Offset: 1

Views

Author

Keywords

Examples

			1.0020083928260822...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Crossrefs

Programs

  • Maple
    evalf(Zeta(9)) ; # R. J. Mathar, Oct 16 2015
  • Mathematica
    RealDigits[Zeta[9],10,100][[1]] (* Harvey P. Dale, Aug 27 2014 *)

Formula

From Peter Bala, Dec 04 2013: (Start)
Definition: zeta(9) = Sum_{n >= 1} 1/n^9.
zeta(9) = 2^9/(2^9 - 1)*( Sum_{n even} n^7*p(n)*p(1/n)/(n^2 - 1)^10 ), where p(n) = n^4 + 10*n^2 + 5. See A013663, A013671 and A013675. (End)
zeta(9) = Sum_{n >= 1} (A010052(n)/n^(9/2)) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^(9/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(9) = Product_{k>=1} 1/(1 - 1/prime(k)^9). - Vaclav Kotesovec, May 02 2020
From Peter Bala, Apr 27 2025: (Start)
zeta(9) = 1/9! * Integral_{x >= 0} x^9 * exp(x)/(exp(x) - 1)^2 dx = 2^9/(2^9 - 1) * 1/9! * Integral_{x >= 0} x^9 * exp(x)/(exp(x) + 1)^2 dx.
zeta(9) = 1/10! * Integral_{x >= 0} x^10 * exp(x)*(exp(x) + 1)/(exp(x) - 1)^3 dx = 1/(3^5 * 5^3 * 7 * 17) * Integral_{x >= 0} x^10 * exp(x)*(exp(x) - 1)/(exp(x) + 1)^3 dx. (End)