A013671 Decimal expansion of zeta(13).
1, 0, 0, 0, 1, 2, 2, 7, 1, 3, 3, 4, 7, 5, 7, 8, 4, 8, 9, 1, 4, 6, 7, 5, 1, 8, 3, 6, 5, 2, 6, 3, 5, 7, 3, 9, 5, 7, 1, 4, 2, 7, 5, 1, 0, 5, 8, 9, 5, 5, 0, 9, 8, 4, 5, 1, 3, 6, 7, 0, 2, 6, 7, 1, 6, 2, 0, 8, 9, 6, 7, 2, 6, 8, 2, 9, 8, 4, 4, 2, 0, 9, 8, 1, 2, 8, 9, 2, 7, 1, 3, 9, 5, 3, 2, 6, 8, 1, 3
Offset: 1
Examples
1.0001227133475784891467518365263573957142751058955098451367026716208967...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Mathematica
RealDigits[Zeta[13],10,120][[1]] (* Harvey P. Dale, Dec 24 2016 *)
-
PARI
zeta(13) \\ Charles R Greathouse IV, Apr 25 2016
Formula
From Peter Bala, Dec 04 2013: (Start)
Definition: zeta(13) = sum {n >= 1} 1/n^13.
zeta(13) = 2^13/(2^13 - 1)*( sum {n even} n^9*p(n)*p(1/n)/(n^2 - 1)^14 ), where p(n) = n^6 + 21*n^4 + 35*n^2 + 7. (End)
zeta(13) = Sum_{n >= 1} (A010052(n)/n^(13/2)) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^(13/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(13) = Product_{k>=1} 1/(1 - 1/prime(k)^13). - Vaclav Kotesovec, May 02 2020