A013674 Decimal expansion of zeta(16).
1, 0, 0, 0, 0, 1, 5, 2, 8, 2, 2, 5, 9, 4, 0, 8, 6, 5, 1, 8, 7, 1, 7, 3, 2, 5, 7, 1, 4, 8, 7, 6, 3, 6, 7, 2, 2, 0, 2, 3, 2, 3, 7, 3, 8, 8, 9, 9, 0, 4, 7, 1, 5, 3, 1, 1, 5, 3, 1, 0, 5, 2, 0, 3, 5, 8, 8, 7, 8, 7, 0, 8, 7, 0, 2, 7, 9, 5, 3, 1, 5, 1, 7, 8, 6, 2, 8, 5, 6, 0, 4, 8, 4, 6, 3, 2, 2, 4, 6
Offset: 1
Examples
1.000015282259408651871732571487636722...
References
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
Links
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Mathematica
RealDigits[Zeta[16], 10, 96][[1]] (* Alonso del Arte, Mar 15 2015 *)
-
PARI
zeta(16) \\ Michel Marcus, Feb 20 2015
Formula
zeta(16) = Sum_{n >= 1} (A010052(n)/n^8) = sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^8 ). - Mikael Aaltonen, Feb 20 2015
zeta(16) = 3617 * Pi^16 / 325641566250. - Vaclav Kotesovec, May 15 2019
zeta(16) = Product_{k>=1} 1/(1 - 1/prime(k)^16). - Vaclav Kotesovec, May 02 2020