cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013675 Decimal expansion of zeta(17).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 7, 6, 3, 7, 1, 9, 7, 6, 3, 7, 8, 9, 9, 7, 6, 2, 2, 7, 3, 6, 0, 0, 2, 9, 3, 5, 6, 3, 0, 2, 9, 2, 1, 3, 0, 8, 8, 2, 4, 9, 0, 9, 0, 2, 6, 2, 6, 7, 9, 0, 9, 5, 3, 7, 9, 8, 4, 3, 9, 7, 2, 9, 3, 5, 6, 4, 3, 2, 9, 0, 2, 8, 2, 4, 5, 9, 3, 4, 2, 0, 8, 1, 7, 3, 8, 6, 3, 6, 9, 1, 6, 6, 7
Offset: 1

Views

Author

Keywords

Examples

			1.0000076371976378997622736002935630292130882490902626790953798439729356...
		

Crossrefs

Programs

Formula

From Peter Bala, Dec 04 2013: (Start)
Definition: zeta(17) = sum {n >= 1} 1/n^17.
zeta(17) = 2^17/(2^17 - 1)*( sum {n even} n^11*p(n)*p(1/n)/(n^2 - 1)^18 ), where p(n) = n^8 + 36*n^6 + 126*n^4 + 84*n^2 + 9. Cf. A013663, A013667 and A013671.
(End)
zeta(17) = Sum_{n >= 1} (A010052(n)/n^(17/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(17/2) ). - Mikael Aaltonen, Feb 23 2015
zeta(17) = Product_{k>=1} 1/(1 - 1/prime(k)^17). - Vaclav Kotesovec, May 02 2020