A013916 Numbers k such that the sum of the first k primes is prime.
1, 2, 4, 6, 12, 14, 60, 64, 96, 100, 102, 108, 114, 122, 124, 130, 132, 146, 152, 158, 162, 178, 192, 198, 204, 206, 208, 214, 216, 296, 308, 326, 328, 330, 332, 334, 342, 350, 356, 358, 426, 446, 458, 460, 464, 480, 484, 488, 512, 530, 536, 548, 568, 620, 630, 676, 680
Offset: 1
Examples
6 is a term because the sum of the first six primes 2 + 3 + 5 + 7 + 11 + 13 = 41 is prime.
Links
- David W. Wilson, Table of n, a(n) for n = 1..10000
- Romeo Meštrović, Curious conjectures on the distribution of primes among the sums of the first 2n primes, arXiv:1804.04198 [math.NT], 2018.
Programs
-
GAP
P:=Filtered([1..5300],IsPrime);; a:=Filtered([1..Length(P)],n->IsPrime(Sum([1..n],k->P[k])));; Print(a); # Muniru A Asiru, Jan 04 2019
-
MATLAB
p=primes(10000); m=1; for u=1:700 ; suma=sum(p(1:u)); if isprime(suma)==1 ; sol(m)=u; m=m+1; end end sol; % Marius A. Burtea, Jan 04 2019
-
Magma
[n:n in [1..700] | IsPrime(&+PrimesUpTo(NthPrime(n))) ]; // Marius A. Burtea, Jan 04 2019
-
Maple
p:=proc(n) if isprime(sum(ithprime(k),k=1..n))=true then n else fi end: seq(p(n),n=1..690); # Emeric Deutsch
-
Mathematica
s = 0; Do[s = s + Prime[n]; If[PrimeQ[s], Print[n]], {n, 1, 1000}] Flatten[Position[Accumulate[Prime[Range[2000]]], ?(PrimeQ[#] &)]] (* _Harvey P. Dale, Dec 16 2010 *) Flatten[Position[PrimeQ[Accumulate[Prime[Range[2000]]]],True]] (* Fred Patrick Doty, Aug 15 2017 *)
-
PARI
isA013916(n) = isprime(sum(i=1,n,prime(i))) \\ Michael B. Porter, Jan 29 2010
-
Python
from sympy import isprime, prime def aupto(lim): s = 0 for k in range(1, lim+1): s += prime(k) if isprime(s): print(k, end=", ") aupto(680) # Michael S. Branicky, Feb 28 2021
Extensions
More terms from David W. Wilson