A013942 Triangle of numbers T(n,k) = floor(2n/k), k=1..2n, read by rows.
2, 1, 4, 2, 1, 1, 6, 3, 2, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 14, 7, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 18, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 20, 10, 6, 5, 4, 3
Offset: 1
Examples
First four rows: 2 1 4 2 1 1 6 3 2 1 1 1 8 4 2 2 1 1 1 1 ...
Links
- Reinhard Zumkeller, Rows n = 1..100 of table, flattened
Programs
-
Haskell
a013942 n k = a013942_tabf !! (n-1) !! (k-1) a013942_row n = map (div (n * 2)) [1 .. 2 * n] a013942_tabf = map a013942_row [1 ..] -- Reinhard Zumkeller, Jun 04 2013
-
Mathematica
f[n_,h_]:=FractionalPart[(n^2+h)^(1/2)]; g[n_,h_]:=Floor[1/f[n,h]]; TableForm[Table[g[n,h],{n,1,13},{h,1,2n}]]
-
PARI
T(n, k) = 2*n\k; tabf(nn) = for (n=1, nn, for (k=1, 2*n, print1(T(n,k), ", ")); print()); \\ Michel Marcus, Sep 30 2016
Formula
T(n,k) = floor(2n/k), k=1,...,2n.
T(n,k) = [1/{sqrt(k+n^2)}], k=1,2,...,2n, {}=fractional part, []=floor.
Extensions
Keyword tabl replaced by tabf and missing a(90)=1 inserted by Reinhard Zumkeller, Jun 04 2013
Comments