cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A185944 Riordan array ( (1/(1-x))^m , x*A000108(x) ), m = 3.

Original entry on oeis.org

1, 3, 1, 6, 4, 1, 10, 11, 5, 1, 15, 27, 17, 6, 1, 21, 66, 51, 24, 7, 1, 28, 170, 149, 83, 32, 8, 1, 36, 471, 443, 273, 124, 41, 9, 1, 45, 1398, 1362, 891, 448, 175, 51, 10, 1, 55, 4381, 4336, 2938, 1576, 685, 237, 62, 11, 1, 66, 14282, 14227, 9846, 5510, 2572, 996, 311, 74, 12, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 07 2011

Keywords

Examples

			Array begins
   1;
   3,   1;
   6,   4,   1;
  10,  11,   5,   1;
  15,  27,  17,   6,   1;
  21,  66,  51,  24,   7,   1;
  28, 170, 149,  83,  32,   8,  1;
  36, 471, 443, 273, 124,  41,  9,   1;
Production matrix begins:
   3, 1;
  -3, 1, 1;
   4, 1, 1, 1;
  -2, 1, 1, 1, 1;
   1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1;
   0, 1, 1, 1, 1, 1, 1, 1, 1;
   ... _Philippe Deléham_, Sep 20 2014
		

Crossrefs

Cf. A091491 (m=1), A185943 (m=2), A185945 (m=4), A014151 (column k=1).

Programs

  • Mathematica
    r[n_, k_, m_] := k*Sum[ Binomial[i + m - 1, m - 1]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; r[n_, 0, 3] = (n + 1)*(n + 2)/2; Table[ r[n, k, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)

Formula

R(n,k,m) = k*Sum_(i=0..n-k,binomial(i+m-1,m-1)*binomial(2*(n-i)-k-1,n-i-1)/(n-i)), m=3, k>0.
R(n,0,3) = (n+1)*(n+2)/2 = A000217(n+1).

A101974 Triangle read by rows: number of Dyck paths of semilength n with k peaks before the first return (1<= k

Original entry on oeis.org

1, 2, 4, 1, 9, 4, 1, 23, 11, 7, 1, 65, 27, 28, 11, 1, 197, 66, 87, 62, 16, 1, 626, 170, 239, 250, 122, 22, 1, 2056, 471, 627, 829, 630, 219, 29, 1, 6918, 1398, 1656, 2448, 2553, 1419, 366, 37, 1, 23714, 4381, 4554, 6803, 8813, 6979, 2917, 578, 46, 1, 82500, 14282
Offset: 1

Views

Author

Emeric Deutsch, Dec 22 2004

Keywords

Examples

			T(4,2)=4 because we have U(UD)(UD)D|UD, U(UD)U(UD)DD|, UU(UD)D(UD)D| and
UU(UD)(UD)DD|, where U=(1,1), D=(1,-1) (the peaks before the first return | are shown between parentheses).
     1
       2
     4      1
     9      4      1
    23     11      7      1
    65     27     28     11      1
   197     66     87     62     16      1
   626    170    239    250    122     22      1
  2056    471    627    829    630    219     29      1
  6918   1398   1656   2448   2553   1419    366     37      1
 23714   4381   4554   6803   8813   6979   2917    578     46      1
 82500  14282  13231  18571  27362  28364  17206   5567    872     56      1
		

References

  • E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.

Crossrefs

Cf. A000108 (row sums), A014137 (column k=1), A014151 (column k=2), A101975.

Programs

  • Maple
    c:=n->binomial(2*n,n)/(n+1):
    T:=proc(n,k) if k=1 then sum(c(i),i=0..n-1) else sum(c(j)*binomial(n-1-j,k-1)*binomial(n-1-j,k)/(n-1-j),j=0..n-2) fi end proc:
    T(1,1);
    for n from 1 to 12 do seq(T(n,k),k=1..n-1) od; # yields the sequence in triangular form

Formula

T(n, 1)=sum(c(i), i=0..n-1), T(n, k)=sum(c(j)*binomial(n-1-j, k-1)*binomial(n-1-j, k)/(n-1-j), j=0..n-2) for k>1, where c(i)=binomial(2i, i)/(i+1) (i=0, 1, ...) are the Catalan numbers (A000108);
G.f.=1+tzC(z)[1+r(t, z)], where C(z)=1+zC(z)^2 is the Catalan function and r(t, z)=z[1+r(t, z)][1+tr(t, z)] is the Narayana function.
Showing 1-2 of 2 results.