A014190 Palindromes in base 3 (written in base 10).
0, 1, 2, 4, 8, 10, 13, 16, 20, 23, 26, 28, 40, 52, 56, 68, 80, 82, 91, 100, 112, 121, 130, 142, 151, 160, 164, 173, 182, 194, 203, 212, 224, 233, 242, 244, 280, 316, 328, 364, 400, 412, 448, 484, 488, 524, 560, 572, 608, 644, 656, 692, 728, 730, 757
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Patrick De Geest, Palindromic numbers beyond base 10.
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Estimates for the Reciprocal Sum of b-adic Palindromes, 2019.
- Aayush Rajasekaran, Jeffrey Shallit, and Tim Smith, Sums of palindromes: an approach via automata, arXiv:1706.10206 [cs.FL], 2017.
- Eric Weisstein's World of Mathematics, Palindromic Number.
- Eric Weisstein's World of Mathematics, Ternary.
- Index entries for sequences that are an additive basis, order 3.
Crossrefs
Programs
-
Magma
[n: n in [0..800] | Intseq(n, 3) eq Reverse(Intseq(n, 3))]; // Vincenzo Librandi, Sep 09 2015
-
Maple
isA014190 := proc(n) local L; L := convert(n,base,3) ; ListTools[Reverse](L) = L ; end proc: for n from 0 to 500 do if isA014190(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jul 07 2015
-
Mathematica
f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,3], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
-
PARI
ispal(n,b=3)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
-
Python
from gmpy2 import digits def A014190(n): if n == 1: return 0 y = 3*(x:=3**(len(digits(n>>1,3))-1)) return int((c:=n-x)*x+int(digits(c,3)[-2::-1]or'0',3) if n
Chai Wah Wu, Jun 13 2024 -
Sage
[n for n in (0..757) if Word(n.digits(3)).is_palindrome()] # Peter Luschny, Sep 13 2018
Formula
Sum_{n>=2} 1/a(n) = 2.61676111... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
Comments