cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014236 Expansion of g.f.: 2*x*(1-x)/((1-2*x)*(1-2*x^2)).

Original entry on oeis.org

0, 2, 2, 8, 12, 32, 56, 128, 240, 512, 992, 2048, 4032, 8192, 16256, 32768, 65280, 131072, 261632, 524288, 1047552, 2097152, 4192256, 8388608, 16773120, 33554432, 67100672, 134217728, 268419072, 536870912, 1073709056, 2147483648, 4294901760, 8589934592
Offset: 0

Views

Author

Paul F. Hudrlik (hudrlik(AT)scs.howard.edu)

Keywords

Comments

Number of symmetric chiral (optically active) isomers possible for organic compounds with n distinct carbon atoms.
A020522 interleaved with A004171 and apparently the number of asymmetric Dyck (n+2)-paths with exactly half of the steps lying between the first and last peaks; e.g. all asymmetric 3-paths (UU*DDU*D and U*DUU*DD) comply so a(1)=2. - David Scambler, Sep 14 2012

Crossrefs

Second differences of A027556.

Programs

  • GAP
    a:=[0,2,2];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-2]-4*a[n-3]; od; a; # G. C. Greubel, Jun 22 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( 2*x*(1-x)/((1-2*x)*(1-2*x^2)) )); // G. C. Greubel, Jun 22 2019
    
  • Maple
    f := n -> if n mod 2 = 0 then 2^n-2^(n/2) else 2^n; fi;
  • Mathematica
    CoefficientList[Series[2x (1-x)/((1-2x)(1-2x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{2,2,-4},{0,2,2},30] (* Harvey P. Dale, Dec 04 2018 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(2*x*(1-x)/((1-2*x)*(1-2*x^2)))) \\ G. C. Greubel, Jun 22 2019
    
  • Sage
    (2*x*(1-x)/((1-2*x)*(1-2*x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 22 2019
    

Formula

a(n) = 2*A007179(n). - R. J. Mathar, Nov 14 2011
From G. C. Greubel, Jun 22 2019: (Start)
a(n) = 2^((n - 2)/2)*(2^((n + 2)/2) - 1 - (-1)^n).
E.g.f.: exp(2*x) - cosh(sqrt(2)*x). (End)

Extensions

G.f. corrected by Olivier Gérard, Nov 13 2011