cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113848 a(1) = a(2) = 1, a(n+2) = 2*a(n) + a(n+1)^2.

Original entry on oeis.org

1, 1, 3, 11, 127, 16151, 260855055, 68045359719085327, 4630170979299719971778494028407039, 21438483297549327871400796194793048411084076762817293736211302918175
Offset: 1

Views

Author

Jonathan Vos Post, Jan 24 2006

Keywords

Comments

In this sequence the primes begin a(3) = 3, a(4) = 11, a(5) = 127, a(9) = 4630170979299719971778494028407039.

Examples

			a(1) = 1 by definition.
a(2) = 1 by definition.
a(3) = 2*1 + 1^2 = 3.
a(4) = 2*1 + 3^2 = 11.
a(5) = 2*3 + 11^2 = 127.
a(6) = 2*11 + 127^2 = 16151.
		

Crossrefs

Programs

Formula

a(1) = a(2) = 1, for n>2: a(n) = 2*a(n-2) + a(n-1)^2. a(1) = a(2) = 1, for n>0: a(n+2) = 2*a(n) + a(n+1)^2.
a(n) ~ c^(2^n), where c = 1.163464453662702696843453679269882816346479873363677551158525103156732040997... . - Vaclav Kotesovec, Dec 18 2014

A308507 a(n) = (a(n-1) + a(n-2))^4, for n >= 2; a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 16, 83521, 48698490414981476161, 5624216052381164150697569400035392464306474190030694298257503425709420810383376
Offset: 0

Views

Author

John H. Chakkour, Jun 02 2019

Keywords

Examples

			a(4) = (a(3) + a(2))^4 = (16 + 1)^4 = 83521.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(a[n-1]+a[n-2])^4}, a, {n, 10}]
  • Python
    f0 = 0
    f1 = 1
    next_val = (f0+f1)**4
    i = 0
    while i <= 10:
         next_val = (f0+f1)**4
         f0 = f1
         f1 = next_val
         i = i+1
         print(next_val)

A113592 Array of quadratic pseudofibonacci sequences, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 11, 1, 4, 11, 40, 127, 1, 5, 18, 127, 1612, 16151, 1, 6, 27, 332, 16151, 2598264, 260855055, 1, 7, 38, 739, 110260
Offset: 1

Views

Author

Jonathan Vos Post, Jan 26 2006

Keywords

Comments

Row 1 is A113848. Column 1 is A000012 (the simplest sequence of positive numbers: the all 1's sequence). Column 2 is A000027 (the natural numbers) = n. Column 3 is A010000 = A059100(n+1) = n^2 + 2. Column 4 is 2*n + (n^2 + 2)^2 = n^4 + 4*n^2 + 2*n + 4. Column 5 is 2*(n^2 + 2) + (n^4 + 4*n^2 + 2*n + 4)^2 = n^8 + 8*n^6 + 4*n^5 + 24*n^4 + 16*n^3 + 38*n^2 + 16*n + 20.

Examples

			Table (upper left corner):
1...1...3...11...127....16151...260855055...
1...2...6...40...1612...2598624.675284696600...
1...3...11..127..16151..260855055...
1...4...18..332..110260.12157268264...
1...5...27..739..546175...
1...6...38..1456.2120012...
1...7...51..2615.6838327...
1...8...66..4372.19114516...
1...9...83..6907.47706815
1..10..102..10424.108659980...
		

Crossrefs

Formula

Antidiagonals of table: T(i, j) = j-th iteration of a(i, 0) = 1, a(i, 1) = i and for j>1: a(i, j) = 2*a(i, j-2) + a(i, j-1)^2.
Showing 1-3 of 3 results.