A113848
a(1) = a(2) = 1, a(n+2) = 2*a(n) + a(n+1)^2.
Original entry on oeis.org
1, 1, 3, 11, 127, 16151, 260855055, 68045359719085327, 4630170979299719971778494028407039, 21438483297549327871400796194793048411084076762817293736211302918175
Offset: 1
a(1) = 1 by definition.
a(2) = 1 by definition.
a(3) = 2*1 + 1^2 = 3.
a(4) = 2*1 + 3^2 = 11.
a(5) = 2*3 + 11^2 = 127.
a(6) = 2*11 + 127^2 = 16151.
Cf.
A000278,
A000283,
A014253,
A063827,
A072878,
A112957,
A112958,
A112959,
A112960,
A112961,
A112969,
A113785.
-
Join[{a=1,b=1},Table[c=1*b^2+2*a;a=b;b=c,{n,10}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
RecurrenceTable[{a[1]==1, a[2]==1, a[n] == 2*a[n-2] + a[n-1]^2}, a, {n, 1, 10}] (* Vaclav Kotesovec, Dec 18 2014 *)
A308507
a(n) = (a(n-1) + a(n-2))^4, for n >= 2; a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 1, 16, 83521, 48698490414981476161, 5624216052381164150697569400035392464306474190030694298257503425709420810383376
Offset: 0
a(4) = (a(3) + a(2))^4 = (16 + 1)^4 = 83521.
-
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(a[n-1]+a[n-2])^4}, a, {n, 10}]
-
f0 = 0
f1 = 1
next_val = (f0+f1)**4
i = 0
while i <= 10:
next_val = (f0+f1)**4
f0 = f1
f1 = next_val
i = i+1
print(next_val)
A113592
Array of quadratic pseudofibonacci sequences, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 6, 11, 1, 4, 11, 40, 127, 1, 5, 18, 127, 1612, 16151, 1, 6, 27, 332, 16151, 2598264, 260855055, 1, 7, 38, 739, 110260
Offset: 1
Table (upper left corner):
1...1...3...11...127....16151...260855055...
1...2...6...40...1612...2598624.675284696600...
1...3...11..127..16151..260855055...
1...4...18..332..110260.12157268264...
1...5...27..739..546175...
1...6...38..1456.2120012...
1...7...51..2615.6838327...
1...8...66..4372.19114516...
1...9...83..6907.47706815
1..10..102..10424.108659980...
Cf.
A000012,
A000027,
A000278,
A000283,
A010000,
A014253,
A059100,
A063827,
A072878,
A112957,
A112958,
A112959,
A112960,
A112961,
A112969,
A113785.
Showing 1-3 of 3 results.
Comments