cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014314 Number of up steps in all length n left factors of Dyck paths.

Original entry on oeis.org

0, 1, 3, 7, 17, 36, 82, 169, 373, 760, 1646, 3334, 7130, 14392, 30500, 61429, 129293, 260016, 544342, 1093546, 2279470, 4575736, 9504188, 19067162, 39486402, 79180816, 163561932, 327866764, 675791828, 1354258096, 2786074952, 5581844749, 11464229693, 22963817056, 47094437222, 94318519234, 193174606118
Offset: 0

Views

Author

Keywords

Examples

			a(4)=17 because in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU we have a total of 2+3+2+3+3+4=17 up steps (U = (1,1), D=(1,-1)).
G.f. = x + 3*x^2 + 7*x^3 + 17*x^4 + 36*x^5 + 82*x^6 + 169*x^7 + 373*x^8 + ...
		

Crossrefs

Cf. A120730.

Programs

  • Maple
    q := sqrt(1-4*z^2): G := (1/2)*(1-q)*(z+q)/(z*(1-2*z)*q): Gser := series(G, z = 0, 34): seq(coeff(Gser, z, n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x^2])*(x+Sqrt[1-4*x^2])/(2*x*Sqrt[1-4*x^2]*(1-2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
    Flatten[{0, Table[2^(n-1) + (n-1)*If[EvenQ[n], Binomial[n-1, n/2], Binomial[n, (n-1)/2]/2], {n, 1, 40}]}] (* Vaclav Kotesovec, Nov 04 2017 *)
  • PARI
    z='z+O('z^66); q = sqrt(1-4*z^2); concat([0], Vec((1-q)*(z+q)/(2*z*q*(1-2*z))) ) \\ Joerg Arndt, Sep 16 2014

Formula

G.f.: g(z)=(1-q)*(z+q)/(2*z*q*(1-2*z)), where q = sqrt(1-4*z^2).
a(n) = sum(k>=0, k*A120730(n,k)).
D-finite with recurrence: (n+1)*a(n) = 4096*(11-n)*a(n-12) + 3072*(2*n-21)*a(n-11) + 256*(7*n-44)*a(n-10) + 128*(445-56*n)*a(n-9) + 128*(16*n-137)*a(n-8) + 32*(84*n-453)*a(n-7) + 32*(267-51*n)*a(n-6) + 8*(53-28*n)*a(n-5) + 24*(16*n-45)*a(n-4) + 2*(79-32*n)*a(n-3) + (14-25*n)*a(n-2) + (10*n+1)*a(n-1), n>=12. - Fung Lam, Mar 09 2014
0 = a(n)*32*(n+1) + a(n+1)*8*(-n+1) + a(n+2)*(-20*n-68) + a(n+3)*(6*n+20) + a(n+4)*(3*n+16) + a(n+5)*(-n-6) if n>=0. - Michael Somos, Mar 10 2014
0 = a(n)*8*(n+1)*(n^2+6*n+4) + a(n+1)*-4*(n^3+7*n^2+14*n+14) + a(n+2)*-2*(n^3+8*n^2+11*n-14) + a(n+3)*(n+4)*(n^2+4*n-1) if n>=0. - Michael Somos, Mar 10 2014
0 = a(n) * (+64*a(n+1) -48*a(n+2) -8*a(n+3) +8*a(n+4)) + a(n+1) * (-48*a(n+1) +28*a(n+2) +14*a(n+3) -6*a(n+4)) + a(n+2) * (+6*a(n+2) -5*a(n+3) -a(n+4)) + a(n+3) * (-a(n+3) +a(n+4)) if n>=0. - Michael Somos, Mar 10 2014
D-finite Recurrence (of order 3): (n+1)*(n^2 - 2*n - 4)*a(n) = 2*(n^3 - n^2 - 10*n - 2)*a(n-1) + 4*(n^3 - 2*n^2 - n + 8)*a(n-2) - 8*(n-2)*(n^2-5)*a(n-3). - Vaclav Kotesovec, Mar 20 2014
a(n) ~ 2^(n-1/2)*sqrt(n)/sqrt(Pi) * (1 + sqrt(Pi)/sqrt(2*n)). - Vaclav Kotesovec, Mar 20 2014
G.f.: (1 - x - (1 - x - 4*x^2) / sqrt(1 - 4*x^2)) / (2 * x * (1 - 2*x)). - Michael Somos, Mar 23 2014
From Vaclav Kotesovec, Nov 04 2017: (Start)
For n > 0, a(n) = 2^(n-1) + (n-1)* binomial(n-1, n/2) if n is even,
a(n) = 2^(n-1) + (n-1)* binomial(n, (n-1)/2)/2 if n is odd. (End)