A014323 Three-fold convolution of Bell numbers with themselves.
1, 3, 9, 28, 93, 333, 1289, 5394, 24366, 118526, 618924, 3456942, 20573391, 129951231, 867877107, 6106194478, 45109290477, 348836705235, 2816093142803, 23673989688810, 206794355179656, 1873232870155036, 17565534522745008, 170237112831874188
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
Programs
-
Magma
A014322:= func< n | (&+[Bell(j)*Bell(n-j): j in [0..n]]) >; A014323:= func< n | (&+[Bell(j)*A014322(n-j): j in [0..n]]) >; [A014323(n): n in [0..40]]; // G. C. Greubel, Jan 08 2023
-
Mathematica
A014322[n_]:= Sum[BellB[j]*BellB[n-j], {j,0,n}]; A014323[n_]:= Sum[BellB[j]*A014322[n-j], {j,0,n}]; Table[A014323[n], {n,0,40}] (* G. C. Greubel, Jan 08 2023 *)
-
SageMath
def A014322(n): return sum(bell_number(j)*bell_number(n-j) for j in range(n+1)) def A014323(n): return sum(bell_number(j)*A014322(n-j) for j in range(n+1)) [A014323(n) for n in range(41)] # G. C. Greubel, Jan 08 2023
Formula
G.f.: (1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))))^3, a continued fraction. - Ilya Gutkovskiy, Sep 25 2017
From G. C. Greubel, Jan 08 2023: (Start)
G.f.: ( Sum_{j>=0} A000110(j)*x^j )^3. (End)