A014325 Four-fold convolution of Bell numbers with themselves.
1, 4, 14, 48, 169, 624, 2442, 10188, 45452, 217100, 1109914, 6064584, 35330715, 218788432, 1435302930, 9940062428, 72422364227, 553338786504, 4420324121772, 36820875272488, 319053830821880, 2869645346679368, 26739383194844404, 257682847299543248
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..575
Programs
-
Magma
A014322:= func< n | (&+[Bell(j)*Bell(n-j): j in [0..n]]) >; A014325:= func< n | (&+[A014322(j)*A014322(n-j): j in [0..n]]) >; [A014325(n): n in [0..40]]; // G. C. Greubel, Jan 08 2023
-
Mathematica
A014322[n_]:= Sum[BellB[j]*BellB[n-j], {j,0,n}]; A014325[n_]:= Sum[A014322[j]*A014322[n-j], {j,0,n}]; Table[A014325[n], {n,0,40}] (* G. C. Greubel, Jan 08 2023 *)
-
SageMath
def A014322(n): return sum(bell_number(j)*bell_number(n-j) for j in range(n+1)) def A014325(n): return sum(A014322(j)*A014322(n-j) for j in range(n+1)) [A014325(n) for n in range(41)] # G. C. Greubel, Jan 08 2023
Formula
G.f.: (1/(1 - x - x^2/(1 - 2*x - 2*x^2/(1 - 3*x - 3*x^2/(1 - 4*x - 4*x^2/(1 - ...))))))^4, a continued fraction. - Ilya Gutkovskiy, Sep 25 2017
G.f.: ( Sum_{j>=0} A000110(j)*x^j )^4. - G. C. Greubel, Jan 08 2023