A014326 Convolution of partition numbers and Bell numbers.
1, 2, 5, 12, 32, 95, 328, 1294, 5748, 28152, 149768, 856130, 5218107, 33712600, 229800588, 1646316230, 12355374717, 96861192976, 791258805462, 6720627186126, 59234364203973, 540812222400025, 5106663817693176, 49798678281859244, 500857393911224861
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Magma
A014326:= func< n | (&+[NumberOfPartitions(j)*Bell(n-j): j in [0..n]]) >; [A014326(n): n in [0..40]]; // G. C. Greubel, Jan 08 2023
-
Maple
with(combinat): a:= n-> add(numbpart(k)*bell(n-k), k=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Mar 15 2015
-
Mathematica
a[n_]:= Sum[PartitionsP[k]*BellB[n-k], {k,0,n}]; Table[a[n], {n,0,30}] (* Jean-François Alcover, Dec 06 2016 *)
-
SageMath
def A014326(n): return sum(number_of_partitions(j)*bell_number(n-j) for j in range(n+1)) [A014326(n) for n in range(41)] # G. C. Greubel, Jan 08 2023