cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A292463 Number of partitions of n with n kinds of 1.

Original entry on oeis.org

1, 1, 4, 14, 51, 188, 702, 2644, 10026, 38223, 146359, 562456, 2168134, 8379539, 32459199, 125984039, 489837300, 1907490728, 7438346255, 29042470132, 113522618066, 444199913556, 1739735079466, 6819657196928, 26753893533257, 105034060120469, 412637434996367
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2017

Keywords

Examples

			a(2) = 4: 2, 1a1a, 1a1b, 1b1b.
		

Crossrefs

Main diagonal of A292508.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
          binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..30);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          (numtheory[sigma](j)+k-1)*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
    # third Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=1,
          combinat[numbpart](n), b(n-1, k) +b(n, k-1)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    Table[SeriesCoefficient[1/(1-x)^(n-1) * Product[1/(1-x^k), {k,1,n}], {x,0,n}], {n,0,30}] (* Vaclav Kotesovec, Sep 19 2017 *)

Formula

a(n) = [x^n] 1/(1-x)^n * 1/Product_{j=2..n} (1-x^j).
a(n) is n-th term of the Euler transform of n,1,1,1,... .
a(n) ~ c * 4^n / sqrt(n), where c = QPochhammer[-1, 1/2] / (8*sqrt(Pi) * QPochhammer[1/4, 1/4]) = 0.48841139329043831428669851139824427133317... - Vaclav Kotesovec, Sep 19 2017
Equivalently, c = 1/(4*sqrt(Pi)*QPochhammer(1/2)). - Vaclav Kotesovec, Mar 17 2024

A292613 a(n) = [x^n] 1/(1-x)^n * Product_{k=1..n} 1/(1-x^k).

Original entry on oeis.org

1, 2, 7, 25, 92, 343, 1292, 4902, 18703, 71677, 275694, 1063636, 4114131, 15948762, 61946290, 241013869, 939125870, 3664299332, 14314777054, 55982787136, 219158088711, 858728875776, 3367576480747, 13216392846128, 51905939548950, 203989227456894, 802164259099114
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 20 2017

Keywords

Comments

Number of ways to pick n units in all partitions of 2n - Olivier Gérard, May 07 2020

Examples

			Illustration of comment for n=3, a(3)=25 :
Among the 11 integer partitions of 6, 3 have at least 3 ones.
3,1,1,1  ;  2,1,1,1,1;  1,1,1,1,1,1;
There are respectively 1, 4 and 20 ways to pick 3 of these.
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1-x)^n*Product[1/(1-x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]

Formula

a(n) ~ c * 4^n / sqrt(Pi*n), where c = 1/(2*QPochhammer[1/2, 1/2]) = 1.7313733097275318057689... - Vaclav Kotesovec, Sep 20 2017
a(n) = A292508(n,n+1). - Alois P. Heinz, Jul 16 2021

A292617 Convolution of number of partitions into distinct parts and Catalan numbers.

Original entry on oeis.org

1, 2, 4, 10, 25, 70, 209, 656, 2137, 7155, 24447, 84864, 298374, 1060151, 3800365, 13727145, 49910870, 182522747, 670896855, 2477250003, 9184502747, 34177467134, 127606759053, 477890336663, 1794697782990, 6757164079051, 25501212956975, 96450275088260
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 20 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsQ[k]*CatalanNumber[n-k], {k, 0, n}], {n, 0, 50}]

Formula

a(n) ~ c * 4^n / (sqrt(Pi) * n^(3/2)), where c = QPochhammer[-1, 1/4]/2 = 1.3559096738634793803455442348539593...

A304824 Convolution of central binomial coefficients and partition numbers.

Original entry on oeis.org

1, 3, 10, 33, 113, 397, 1431, 5249, 19514, 73260, 277100, 1054248, 4029859, 15463765, 59531725, 229816430, 889301153, 3448417251, 13396337155, 52126461984, 203124067675, 792559645912, 3096104725974, 12107810534937, 47395948167885, 185697860476576
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsP[n-k]*Binomial[2*k, k], {k, 0, n}], {n, 0, 25}]

Formula

a(n) ~ 4^n / (QPochhammer[1/4] * sqrt(Pi*n)).

A292619 Convolution of number of overpartitions and Catalan numbers.

Original entry on oeis.org

1, 3, 8, 21, 54, 144, 404, 1195, 3712, 12000, 39994, 136400, 473430, 1665868, 5926476, 21275805, 76964808, 280250088, 1026309908, 3777411342, 13965286180, 51837285776, 193107846304, 721732334136, 2705480787422, 10169387310362, 38320472420462, 144733083435688
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 20 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[PartitionsP[k-j] * PartitionsQ[j], {j, 0, k}] * CatalanNumber[n-k], {k, 0, n}], {n, 0, 50}]

Formula

a(n) ~ c * 4^n / (sqrt(Pi) * n^(3/2)), where c = QPochhammer[-1, 1/4] / (2*QPochhammer[1/4, 1/4]) = 1.96926035366826943194719369696726567...
Showing 1-5 of 5 results.